
QHP4701
Introduction to Data Science Programming

Lecturer: Nikesh Bajaj, PhD
School of Physical and Chemical Sciences
http://nikeshbajaj.in

Control Flow Tools: Program Development

http://nikeshbajaj.in/

So far we have covered

● Familiar with Data Science Tasks.

●Python, Anaconda, Jupyter-notebook

●Data Types (int, float, str, None, bool)

●Collection types (list, dict, set, tuple)

● For-loop, linear algebra operations

●Numpy Arrays

●Reading Wave file, Image File, CSV file

Lecture Outline

Control flow tools

●Condition operators

●Condition flow (if-else)

●Complex conditions with Boolean operators

●Condition with None

● Loops (for-loop, while-loop)

● Interruptions to loops

●Nested loop

Comparison operators: revisit
● In Python, there are operators to compare two variables, e.g, x and y.

●Comparing two variables using these operators return True if condition

passed else it return False

● 5>4à True

● 5==4 à False

Lecture Outline

Control flow tools

●Condition operators

●Condition flow (if-else)

●Complex conditions with Boolean operators

●Condition with None

● Loops (for-loop, while-loop)

● Interruptions to loops

●Nested loop

Condition flow: if-else

● If-else: In programming languages, performing a test

before doing something can be done by using (if-else)

conditions.

indented block

if x==3:
…

do something

…

else:

colon

…

do something else

…

Is x==3?
YESNO

x

add 2 to it
x = x + 2

do something

multiply it by 2
x = x*2

do something else

Condition flow: if-else

If-else

examples

for x in range(10):

if x==3:

x = x+2

else:

x = x*2

print(x)

for x in range(10):

if x==3:

x = x+2

print(x)

else section is optional

Condition flow: if-elif-else
● If-elif-else: To use multiple conditions, elif (else-if) can be used

indented block

if x>3:
… do something 1 …

elif x>1:

… do something 2 …

else:

… do something 3 …

colon

Is x>3?
YES

NO

x

print(x-3)

print(x-1) Is x>1?
YES

NO
print(x)

Condition flow: if-elif-else

● If-elif-else: examples

for x in range(10):

if x>3:

x = x-3

elif x>1:

x = x-1

else:

x = x+1

print(x)

for x in range(10):

if x==3:

x = x-3

elif x==4:

x = x-4

else:

x = x+1

print(x)

Important

• Conditions are tested

sequentially, as a flow

chart.

• If ‘if ’ condition satisfied,

‘elif’ and else are not

tested

Condition flow: if-elif-else

● If-elif-else: Question - make a flow-chart to print a grade

of a students as per table, with python expressions.

Marks Grade

Above 90 A

Between 80 to 90 B

Between 70 to 80 C

Between 50 to 70 D

Below 50 F

Condition flow: Nested if-else
●Nested If-else: condition inside a condition

if x>3:

if x<6:

… do 1…

else:

… do 2…

elif x>1:

… do 3…

else:

… do 4 …

Is x>3?
YES

NO

x

print(x-6)

print(x-3)

Is x<6?
YES

NO

print(x)

Is x>1?
YES

NO

print(x-1)

Condition flow: Nested if-else: Question
●What is value of y, if x = 10?

Is x>3?
YES

NO

x

Is x<6?
YES

NO

Is x>1?
YES

NO

y=0

y=x-6

y=x-3

y=x-1

y=10

Condition flow: Nested if-else: Question

●What is the output of program for

given input i, j, k as follow;

A. i=3, j=5, k =7

B. i=-2, j=-5, k=9

C. i=8, j=15, k=12

D. i = 25, j=15, k=17

if i < j:

if j < k:

i = j

else:

j = k

else:

if j > k:

j = i

else:

i = k

print(i,j,k)

Lecture Outline

Control flow tools

●Condition operators

●Condition flow (if-else)

●Complex conditions with Boolean operators

●Condition with None

● Loops (for-loop, while-loop)

● Interruptions to loops

●Nested loop

Combing the conditions
● Test if x is between 3 and 6

Is x>3?
YES

NO

x

Is x<6?
YES

NO

print(‘FAIL’)

print(‘PASS’)

Is x>3
and
x<6?

YES

NO

x

print(‘PASS’)

print(‘FAIL’)

Complex conditions
with Boolean operators

●A complex condition can be expressed by combining simple conditions

● x > 3 and x<6

● x == 3 or x ==6

● x not equal to 3 or 6

●Python allows to combine conditions using keywords such as and, or, and not

(also called as Boolean Operators)
● and needs both conditions to be True

● or needs at least one of both to be True

● not reverses the True to False and False to True

● Truth tables for and, or and not operators are as follow;

x y x and y

False False False

False True False

True False False

True True True

x y x or y

False False False

False True True

True False True

True True True

x not x

False True

True False

and or

not

Complex conditions
with Boolean operators

● Test if x is between 3 and 6

Is x>3
and
x<6?

YES

NO

x

print(‘PASS’)

print(‘FAIL’)

if (x>3) and (x<6):

print(‘PASS’)

else:

print(‘FAIL’)

It is always good practice to use

parenthesis () with operators

Complex conditions

●Convert following with complex conditions

Is x>3?
YES

NO

x

print(x-6)

print(x-3)

Is x<6?
YES

NO

print(x)

Is x>1?
YES

NO

print(x-1)

Complex conditions

● Example

if (x>3) and (x<6):
… do 1…

elif (x>3) and not (x<6):
… do 2…

elif x>1:
… do 3…

else:
… do 4 …

Complex conditions

What is the output of following

● (i>j) and (i-j>-1) or (i ==0)

A. i=0, j=3

B. i =1, j=10

● ((i==j) or (i-j >1) or (j-i>1)) and (j-5<i-3) and not (i==0)

A. For i=0, j=3

B. i=10, j=10

Complex conditions

●Boolean operators can also be represented as & and |

●and &

●or |

if (x>3) | (x<6):

print(‘PASS’)

else:

print(‘FAIL’)

if (x>3) & (x<6):

print(‘PASS’)

else:

print(‘FAIL’)
NOTE: There symbolic

operators have other

functionalities.

Complex conditions

Lecture Outline

Control flow tools

●Condition operators

●Condition flow (if-else)

●Complex conditions with Boolean operators

●Condition with None

● Loops (for-loop, while-loop)

● Interruptions to loops

●Nested loop

Condition with None

● Variables can be tested if they are None or not as follow;

if x is None:

print(‘PASS’)

else:

print(‘FAIL’)

if x==None:

print(‘PASS’)

else:

print(‘FAIL’)

Lecture Outline

Control flow tools

●Condition operators

●Condition flow (if-else)

●Complex conditions with Boolean operators

●Condition with None

● Loops (for-loop, while-loop)

● Interruptions to loops

●Nested loop

Loops: for-loop
we have seen it in previous lectures

● For-loop: In programming languages, for repeating

operation(s), a loop is used, which iterate over a

sequence (goes over each element of a sequence)

numbers = [1,2,3,4,5]

squares = []

for num in numbers:

squares.append(num ** 2)

print(squares)

fruits = ["apple", "banana", "cherry"]

for fruit in fruits:

print(fruit)

indented block

for x in y:
…

do something

…

colon

for i in range(6):

print(i)

Loops: for-loop

● For-loop: It can also be seen as a flow-diagram

containing a loop

for x in range(10):

print(x)

Is x<10
YES

NO

x=0

stop

print(x)
x=x+1

Loops: while-loop

●while-loop: In programming languages, for repeating

operation(s), as long as a condition is satisfied, can be

done by using while-loop.

x= 0

while x<10:

print(x)

x = x+1

while x<10:
…

do something with x

…

colon

Cond = TRUE

while Cond:

X = np.random.rand()

if X>0.5:

Cond = FALSE

print(X)

Loops: while-loop

●while-loop: while-loop is used carefully as it can go on forever

(infinite-loop) if condition (statement) is always True.

x = 1

while x>0:

print(x)

x = x+1

Cond = TRUE

while Cond:

X = np.random.rand()

if X>2:

Cond = FALSE

print(X)

while True:

print(‘Hello’)

Loops: while-loop

●while-loop: It can also be seen as a flow-diagram

containing a loop

Is x<10
YES

NO

x=0

stop

print(x)
x=x+1

x= 0

while x<10:

print(x)

x = x+1

Lecture Outline

Control flow tools

●Condition operators

●Condition flow (if-else)

●Complex conditions with Boolean operators

●Condition with None

● Loops (for-loop, while-loop)

● Interruptions to loops

●Nested loop

Loops: Interruptions

● for-loop and while-loop can be interrupted to change

the behaviour by using following keywords.

●break

● continue

●pass*

*pass does not do anything

check

YES

stop

do something

Loops: Interruptions

break

● If during following the loop, program sees ‘break’ it

completely stops the loop

● To stop the loop, break out of the loop, exit the loop

for x in range(100):

print(‘Hello’)

if x>10:

break

check

YES

stop

do something

If
break

stop

Loops: Interruptions

break

Alpha = [‘D’, ‘B’, ‘A’, ‘C’]

i = 0

while True:

c = Alpha[i]

print(c)

i = i+1

if c==‘A’:

break

check

YES

stop

do something

If
break

stop

Loops: Interruptions

continue

● If during following the loop, program sees ‘continue’ it

skip everything after that to go to next iteration

● To skip the part of iteration

● In figure, op 2 will be skipped if program sees continue

check
YES

stop

op 1

If
continue

op 2

YES

Loops: Interruptions

continue

● example

x = [3, 10, None, 10, 50]

c = 0

for a in x:

print(a)

if a is None:

continue

c = c + a

check
YES

stop

op 1

If
continue

op 2

YES

Loops: Interruptions

pass

● pass does nothing. It is used as a dummy operation

for x in range(100):

print(‘Hello’)

if x>10:

pass

Lecture Outline

Control flow tools

●Condition operators

●Condition flow (if-else)

●Complex conditions with Boolean operators

●Condition with None

● Loops (for-loop, while-loop)

● Interruptions to loops

●Nested loops

Loops: nested loops

● for-loop and while-loop can have nested loops

●A loop inside a loop

check

YES

stop

do something

XY = []

for x in range(10):

for y in range(10):

z = x**2 + y**2

XY.append(z)

● Next !!!
- 3.2: More on Control flow

Defining Functions

