
QHP4701
Introduction to Data Science Programming

Lecturer: Nikesh Bajaj, PhD
School of Physical and Chemical Sciences
http://nikeshbajaj.in

Function: Program Development

http://nikeshbajaj.in/

Lecture Outline

Control flow tools

●Condition with sequences

●Condition with sequences with ‘in’ operator

Function Definition

● Function Definition and arguments

● Function Definition: calling

● Function Definition: arguments/returns

●Modular Approach in Programming

● Function Definition: Recursion

Conditions with sequences: List, Tuple
● Sequence data types in python are: list, tuple, dict, and set.

● List

● For given two lists, we can test if they are equal or not using '=='

●Operators like >, <, >=, <= are not applicable for lists or strings

● Tuple: Two tuples can be testes for equality (same as list)

x = [3, 10, 10, 50]

y = [3, 10, 50]

if x==y:

print(‘x and y are same’)

Conditions with sequences: Dictionaries
●Dictionaries: dict

● For given two dictionaries, we can test if they are equal or not using '=='

●We can also check two dictionaries have same length and same keys

x = {'A':1, 'B':2, 'C':3}

y = {'A':1, 'B':2, ‘C’:4}

if x==y:

print(‘x and y are same’)

if len(x) == len(y):

print(‘x and y have same length’)

if x.keys() == y.keys():

print(‘x and y have same keys’)

Conditions with sequences: Sets
● Sets: set

● For given two sets, we can test equality, and exclusion '==','>','<',

x = set([1,2,2,2,3])

y = set([2,1,1,3])

if x == y:

print('x and y are same')

• A == B if A is equal to B
• A < B if A is proper subset of B
• A <= B if A is subset of B
• A > B. If A is proper superset of B
• A >= B. If A is superset of B

Conditions with sequences: Sets

● Set: question

●Check which one is subset of which and proper subset of which
● Is A subset of B and C?

● Is B subset of A and C?

● Is C subset of A and B?

A = set([1,2,2,2,3])

B = set([2,1,1,3])

C = set([2,1,3,4,4])

• A == B if A is equal to B
• A < B if A is proper subset of B
• A <= B if A is subset of B
• A > B. If A is proper superset of B
• A >= B. If A is superset of B

Lecture Outline

Control flow tools

●Condition with sequences

●Condition with sequences with ‘in’ operator

Function Definition

● Function Definition and arguments

● Function Definition: calling

● Function Definition: arguments/returns

●Modular Approach in Programming

● Function Definition: Recursion

Conditions with sequences: 'in'
● In Python, in operator allows you to test, whether an element is in given

sequences, which can be a list, tuple, set or keys of a dictionary

x1 = [1,2,3]

x2 = (1,2,3)

x3 = set([1,2,2,2,3])

x4 = {1:'A', 2:'B’, 3:'C’}

x ∈ Y

if 1 in x1:

print('1 is in x1’)

if 1 in x2:

print('1 is in x2’)

if 1 in x4.keys():

print('1 is in x4')

if 1 in x4:

print('1 is in x4')

Conditions with sequences: 'in'

● in operator is useful to avoid errors and create dynamic sequences

●Before looking index of an element, test if it is in the list

●Create new key-value pair in dictionary, only if it doesn’t exist

x = ['A', 'B', 'C', 'G']

if 'K' in x:

idx = x.index('K')

print(‘K is in x at location’,idx)

x ∈ Y

y = {'A':1, 'B':2, 'C':3}

if 'D' not in y:

y[‘D’] = 4

Conditions with sequences: 'in'

●Question

●Given a sentence

S = ‘set theory is one of the greatest achievements of modern mathematics’

●Create a dictionary that tells the frequency of all the vowels in the sentence S

The output should look something like this:

freq_vowels = {'a':10, 'e':12, 'i':2, 'o':5, 'u':0}

x ∈ Y

Lecture Outline

Control flow tools

●Condition with sequences

●Condition with sequences with ‘in’ operator

Function Definition

● Function Definition and arguments

● Function Definition: calling

● Function Definition: arguments/returns

●Modular Approach in Programming

● Function Definition: Recursion

Defining a function
● To reuse a block of code, a function can be created, then it can be called

anywhere in the script.

def fun_name():
…

do something with x

…

def myfun():

print(‘Welcome to my code’)

myfun()

Defining a function
Arguments and returns

●A function can have input and output arguments.

def myfun(x,y):
…

do something with x

…

return z

def myfun(x, y):

z = (x**2 - y**2)

return z

Z = myfun(2,3)

Z = myfun(x=2, y=3)

myfun zx
y

Lecture Outline

Control flow tools

●Condition with sequences

●Condition with sequences with ‘in’ operator

Function Definition

● Function Definition and arguments

● Function Definition: calling

● Function Definition: arguments/returns

●Modular Approach in Programming

● Function Definition: Recursion

Defining a function
Calling a function

●Calling a function

●Positional arguments: the order the position should be same as function

definition

●Argument with names: while passing arguments with names, the order

doesn’t matter

def myfun(x, y):

z = (x**2 - y**2)

return z

Z = myfun(2,3) #here x=2, y=3

Z = myfun(3,2) #here x=3, y=2

Z = myfun(x=2, y=3)

Z = myfun(y=3, x=2)

Defining a function: Question
●Question

●Create a function that returns grade of student for

given marks M according to table

Grad = Grading(M)

myfun zx
y

def Grading(M):

pass

return G

Marks Grade

Above 90 A

Between 80 to 90 B

Between 70 to 80 C

Between 50 to 70 D

Below 50 F

Defining a function: Question
●Question

●Create a function that add all the numbers in a list, and avoid None and any

strings

For example

X = [1, 2, 3, None, 0, 4 ,2 , None, ‘A’]

Z = mySum(X)

Z = 12

myfun zx
y

def mySum(X):

pass

return Z

Defining a function : Question
●Question

●Create a function that returns a dictionary that has the

frequency of each character (a-z) for given a string

excluding space, number and any symbols

For example

● S = ‘set theory is one of the greatest achievements of

modern mathematics’

Freq = Freq_Char(S)

myfun zx
y

def Freq_Char(S):

Freq = {}

pass

return Freq

Lecture Outline

Control flow tools

●Condition with sequences

●Condition with sequences with ‘in’ operator

Function Definition

● Function Definition and arguments

● Function Definition: calling

● Function Definition: arguments/returns

●Modular Approach in Programming

● Function Definition: Recursion

Defining a function
Default arguments

●A function can inputs with default values.

def myfun(x, y=0):

z = (x**2 - y**2)

return z

Z = myfun(2)

Z = myfun(2, y=3)

z = myfun(x=2,y=3)

z = myfun(y=3,2)

myfun zx
y=0

Defining a function
Multiple input/output

●A function can multiple inputs and outputs.

def myfun(x1, x2, x3=0):

y1 = (x1**2 + x2**2 + x3**2)

y2 = (x1**2 – x2**2 - x3**2)

return y1, y2

y1,y2 = myfun(2,3,4)

myfun

y1x1

y2x2

x10 y5

.

.
.
.

Defining a function : Question
●Question

Given a list X as follow.

X = [0.1,3.5,5.0,10,0.5,0.3,None,0.1,6.0,10.4,6.2,7,8.9, 1]

Write a piece of code to

● Add all the numbers in X2 which are below 1 (including 1), save them to variable name 'y1’

● Add all the numbers in X2 which are above 1 and below 6 (including 6), save them to

variable name 'y2’

● Add all the numbers in X2 which are above 6 (excluding 6), save them to variable name

'y3'

def sum_cat(X):

y1,y2,y3 = 0,0,0

pass

return y1,y2,y3

Defining a function
Multiple return statement

●A function can multiple return statements, however function exist when it

seems return.

def myfun(x, y=0):

if x==0:

return 0

z = (x**2 - y**2)

return z

z= myfun(0)

It is a good practice

to write docstring

for a defined

function.

Defining a function: Question
●Question

●Use multiple return statement in following

Grad = Grading(M)

myfun zx
y

def Grading(M):

if M>=90:

return ‘A’

return ‘F’

Marks Grade

Above 90 A

Between 80 to 90 B

Between 70 to 80 C

Between 50 to 70 D

Below 50 F

Defining a function
Docstring

●A function can docstring that explains the functions operation.

which can be accessed by a user using help(myfun)

def myfun(x, y=0):

'''

This function computes x^2 – y^2

'''

z = (x**2 - y**2)

return z

help(myfun)

myfun zx
y=0

It is a good practice

to write docstring

for a defined

function.

Lecture Outline

Control flow tools

●Condition with sequences

●Condition with sequences with ‘in’ operator

Function Definition

● Function Definition and arguments

● Function Definition: calling

● Function Definition: arguments/returns

●Modular Approach in Programming

● Function Definition: Recursion

Modular Approach in Programming

●Modular approach to any task is a process of sub-dividing a

bigger task into smaller one.

● Solving/completing smaller tasks first to complete the big task.

● It is a good practice to break a task in multiple smaller tasks.

● Each sub-task handles a specific operation

Task

sub
task 1 Sub task 2 Sub

task 3
Sub

task 4

Defining a function
Calling function in another function

●A function can be called in another function.

def is_even(x):

if x%2==0:

return True

return False

def even_sum(X):

c = 0

for x in X:

if is_even(x)

c = c +x

return c

It is a good practice to

break a task in multiple

smaller tasks.

Modular Approach in
Programming

Defining a function: Question
●Question

●Write a function to find N prime numbers starting from 2

●Before that write a function to test if given number if prime

P = prime_numbers(10)
P=[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

def prime_numbers(N):

p = []

pass #complete the code

if is_prime (x):

p.append(x)

return p

def is_prime (x):

pass #complete the code

if cond:

return True

return False

Lecture Outline

Control flow tools

●Condition with sequences

●Condition with sequences with ‘in’ operator

Function Definition

● Function Definition and arguments

● Function Definition: calling

● Function Definition: arguments/returns

●Modular Approach in Programming

● Function Definition: Recursion

Defining a function
Calling function in itself

●A function can be called in by itself.

For example

●How do you compute factorial of n?

n! = n*(n-1)*(n-2) ….. 3*2*1

(n-1)!

n! = n*((n-1)!)

def factorial(n):

if n==1:

return 1

else:

return n*factorial(n-1)

Recursion

Defining a function: Question

● Next !!!
- 3.4: Visualisation with Matplotlib

