
QHP4701
Introduction to Data Science Programming

Lecturer: Nikesh Bajaj, PhD
School of Physical and Chemical Sciences
http://nikeshbajaj.in

Error Handling

http://nikeshbajaj.in/

Lecture Outline

Error Handling in Python

● Error Handling

●Common Errors

● Efficient ways: using conditions

● Try-Except routine

●Assert/Raise Keywords

●Documentation: docstring

●Analyse code with print: Debugging

●Next: Error full Notebook

Error Handling

Errors: when you don’t get what you want.

● First step to avoid errors, DO NOT GET ANY ERROR!

●Read the Error Message VERY carefully to understand the issue.

●A computer program has be very specific, with explicit instructions, so that it

knows what to do in every conditions. BE SPECIFIC.

●While writing a code, make some test cases to test your code. (software testing)

●Write a good docstring for others to understand the expected input and output.

Lecture Outline

Error Handling in Python

● Error Handling

●Common Errors

● Efficient ways: using conditions

● Try-Except routine

●Assert/Raise Keywords

●Documentation: docstring

●Analyse code with print: Debugging

●Next: Error full Notebook

Common Errors

You are familiar of most of the errors by now, while working of lab

sheets and you are also familiar how to avoid them
● IndexError list index out of range / out of bounds

● ValueError could not convert

● TypeError unsupported operand type(s)

● KeyError key not in dictionary

● ZeroDivisionError division by zero

● FileNotFoundError: [Errno 2] No such file or directory:

●ModuleNotFoundError: No module named 'pnadas’

● AttributeError wrong method or attribute name

Read the Error Message

VERY carefully

It explains everything!

Lecture Outline

Error Handling in Python

● Error Handling

●Common Errors

● Efficient ways: using conditions

● Try-Except routine

●Assert/Raise Keywords

●Documentation: docstring

●Analyse code with print: Debugging

●Next: Error full Notebook

Efficient ways : using conditions

Write a program to compute sum of all the numbers in a list or an array X

● X = [1, 2, 3, 0, 1, 4]

● X = [1,2,3, None, 0, 4, None, 2]

● X = [1,2,3, None, 0, 4, None, 2, ‘A’]

● X = [1,2,3, None, 0, 4, None, 2, np.nan]

● X = [1,2,3, None, 0, 4, None, 2, ‘A’ , np.nan]

● X = [1,2,3, None, 0, 4, None, 2, ‘A’ , np.nan, [1, 2]]

● X = [1,2,3, None, 0, 4, None, 2, ‘A’ , np.nan, [1], {1,2}, {‘a’:1}]

● X = [1,2,3, None, 0, 4, None, 2, ‘A’ , np.nan, [1], {1,2}, {‘a’:1}, ‘1.2’]

Efficient ways : using conditions

Sum of all the numbers in a list or an array X

●Writing in an efficient way to avoid errors

def Sum_X (X):

S = 0

for a in S:

if not cond: #some conditions

S = S + a

return S

Efficient ways : using conditions

Sum of all the numbers in a list or an array X

●Multiple conditions

● Python is lazy in testing the conditions,. It always test first condition then second.

def Sum_X (X):

S = 0

for a in S:

if cond1 and cond2: #some conditions

S = S + a

return S

Efficient ways : using conditions

Exclusion Criteria vs Inclusion Criteria
● Try using small set of conditions.

● Instead of all the conditions to exclude, a fewer condition in include can be used.

def Sum_X _v1(X):

S = 0

for a in S:

if not cond1 and not cond2 and not cond3:

S = S + a

return S

def Sum_X _v2(X):

S = 0

for a in S:

if condA and condB:

S = S + a

return S

Lecture Outline

Error Handling in Python

● Error Handling

●Common Errors

● Efficient ways: using conditions

● Try-Except routine

●Assert/Raise Keywords

●Documentation: docstring

●Analyse code with print: Debugging

●Next: Error full Notebook

Try-Except routine

In Python try-except routine allows code to continue without stopping

in case of any error. except section here allows you to handle the errors

● It is a way to try running a code, else do something else.

try:

S = 0

#some code that may or may not throw an Error

except:

print(‘Something is wrong!!’)

#If ANY error occurs, this section of code is executed

#define here, how you like to handle the error

Try-Except routine

While using try-except routine, we can print error messages, while

continuing the code. It is called catching an error.

try:

S = 0

#some code that may or may not throw an Error

except Exception as e:

print(‘Something is wrong!!’)

print(type(e)) #Type of Error

print(e) #Error Message

Check the full list of Exceptions and details: https://docs.python.org/3/library/exceptions.html

Exception
|── MemoryError
|── NameError
|── OSError
|── ReferenceError
|── RuntimeError
|── StopAsyncIteration
|── StopIteration
|── SyntaxError
|── SystemError
|── TypeError
|── ValueError

https://docs.python.org/3/library/exceptions.html

Try-Except routine

Any specific type of exception can be caught with custom message

try:

S = S + a

#some code that may or may not throw an Error

except NameError:

print(’Either S or a is not defined’)

except:

print(‘Something else is wrong!!’)

Exception
|── MemoryError
|── NameError
|── OSError
|── ReferenceError
|── RuntimeError
|── StopAsyncIteration
|── StopIteration
|── SyntaxError
|── SystemError
|── TypeError
|── ValueError

Try-Except routine

A full structure of try-except routine

try:

S = S + a

#some code that may or may not throw an Error

except NameError:

print(’Either S or a is not defined’)

except:

print(‘Something else is wrong!!’)

else:

print(‘HURREY!! NO ERRORS’) # If NO Errors

finally:

print(‘We always do run’) # This code is always executed

Error Handling

Lecture Outline

Error Handling in Python

● Error Handling

●Common Errors

● Efficient ways: using conditions

● Try-Except routine

●Assert/Raise Keywords

●Documentation: docstring

●Analyse code with print: Debugging

●Next: Error full Notebook

Assert/Raise Keywords

Custom Error Messages and conditions

● There are two ways to throw an Error and stop the execution of code if certain

conditions are met.

● assert, is used to make sure some conditions are met before proceeding to code.

def sum_squqre(x,y):

assert x!=0

x cannot be zero

z = (x**2 + y**2)/x

return z

𝑧 =
𝑥! + 𝑦!

𝑥

Assert/Raise Keywords

Custom Error Messages and conditions

● raise, is used to stop the code by throwing an error (raising an error) with a

message.

●Mathematically valid but c becomes a complex number for a negative z.

def sum_squqre(x,y,z):

if z<0:

raise ValueError('z can not be negative')

c1 = (x**2 + y**2)**(1/2)

c2 = (z)**(1/2)

c = c1 + c2

return c

𝑐 = 𝑥! + 𝑦! + 𝑧

Lecture Outline

Error Handling in Python

● Error Handling

●Common Errors

● Efficient ways: using conditions

● Try-Except routine

●Assert/Raise Keywords

●Documentation: docstring

●Analyse code with print: Debugging

●Next: Error full Notebook

Documentation with docstring

Do write docstring

explain what is expected

as input.

def sum_squqre(x,y,z):

'''

This function computes c = sqrt(x**2 + y**2) + sqrt(z)

Input:

x: a real value

y: a real value

z: a positive real value z>=0

Output:

c: a real value

'''

if z<0:

raise ValueError('z can not be negative')

c1 = (x**2 + y**2)**(1/2)

c2 = (z)**(1/2)

c = c1 + c2

return c

𝑐 = 𝑥! + 𝑦! + 𝑧

Lecture Outline

Error Handling in Python

● Error Handling

●Common Errors

● Efficient ways: using conditions

● Try-Except routine

●Assert/Raise Keywords

●Documentation: docstring

●Analyse code with print: Debugging

●Next: Error full Notebook

Analyse code using print: Debugging

While developing a code, it is common to see unexpected results or error.

●Using print, is an easy way to trace what is happing in the code. Using print at

every stage to display results to see when and where Error occurs.

● Once code is working as expected, print lines

can be removed

def Freq_Char(S):

freq = {}

for c in S:

if cond:

freq[c] = freq[c] +1

return freq

def Freq_Char(S):

freq = {}

print(S)

for c in S:

print(‘char’, c)

if cond:

freq[c] = freq[c] +1

print(freq)

return freq

Lecture Outline

Error Handling in Python

● Error Handling

●Common Errors

● Efficient ways: using conditions

● Try-Except routine

●Assert/Raise Keywords

●Documentation: docstring

●Analyse code with print: Debugging

●Next: Error full Notebook

● Next !!!
- 4.4: Lab session on Error Handling

You will be given a notebook full of errors and your job will be to
fix those error

