Imperial College London

Introduction to Machine Learning & Deep Learning

Nikesh Bajaj, PhD

Research Associate

Imperial College London

https://spkit.github.io/tutorials

Agenda

- Introduction
- What is (Machine) Learning?
- Types of Machine Learning Problems
 - Supervised Learning
 - Regression
 - Classification
 - Excercises and examples
 - Performance metrics
- Deeplearning
 - Neural Networks
 - Examples
 - Conclusion + Resouces

About me ...

- Current work
- PhD Work
- What I like about Machine Learning and AI
- Activities
 - Consultant with deeplearning.ai
 - Mentor at Coursera
 - Competitions, Study groups, Certifications and Courses

What is (machine) learning?

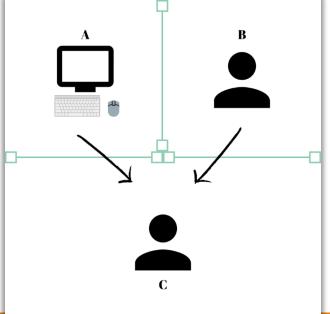
Intelligent Systems

Data Analysis/Science or Statistical Analysis

- A way to design intelligent systems using data
- Early intelligent systems and algorithms were build by hand crafted rules.
- Designing a machine that learn from given data. Without hardcoding the rules.

Artificial Intelligence

Turing Test



Fields in Artificial Intelligence

- Computer Vision
- Robotics
- Natural Language Processing
- Speech/Audio Processing
- Knowledge/Data Representation
- Machine Learning

-

__

Examples (classical)

- Automatic face tagging
- Speech to text, Translation
- Face/emotion recognition
- Sentiment analysis
- Music classification
- Movie/product recommendation
- Search engine
- IoT
 - ... many more

How do we do that?

Data (signal)

Computer(s)

How do you know, if it is working?

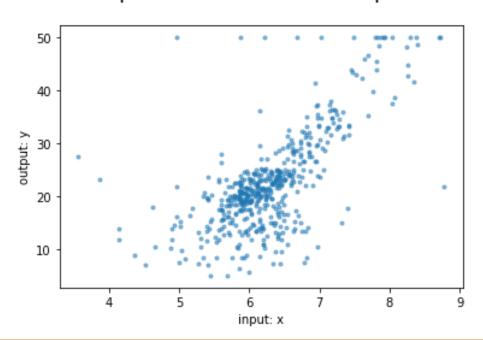
- A machine is said to *learn* from experience E, with respect to task T and some performance measure P, if machine improves on task T, as measured by P, with respect to experience E. (Tom Mitchell (1998))*.
- Properly formulating the a problem and choosing a performance measure
- One of the common mistakes that I encounter, that people overlook above definition or work with poorly formulated problem
- Good News: A lot of people, in this field have already done this part for you. You can start from textbook examples to well defined problems and performance measures.

Machine Learning Problems

- Supervised Learning
 - We know what we are looking for
- Unsupervised Learning
 - We want to find something meaningful
- Semi-supervised learning
 - Weakly supervised learning
- Reinforcement Learning & Recommender systems

Given data – X, and corresponding target value – y, think it as X,y problem. "X maps to y"

Examples: Boston House price*



6.575	24.0
6.421	21.6
7.185	34.7
6.998	33.4
7.147	36.2
6.43	28.7
6.012	22.9
6.172	27.1
5.631	16.5
6.004	18.9

x1	x2	lу
6.575	4.98	24.0
6.421	9.14	21.6
7.185	4.03	34.7
6.998	2.94	33.4
7.147	5.33	36.2
6.43	5.21	28.7
6.012	12.43	22.9
6.172	19.15	27.1
5.631	29.93	16.5
6.004	17.1	18.9

$$X \in \mathbb{R}^n$$

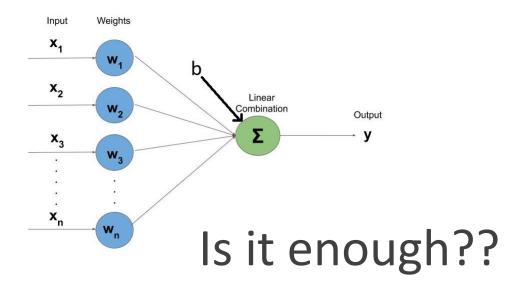
*from scikit-learn

- Using LMS
- Using Gradient Decent

Let's try LMS

Problem (simplified way):

- Given X, y
- Find a function f, such that y = f(X)
- f: can be any function, linear, non-linear, etc
- Example: a linear function
 - \circ y' = f(X)
 - $y' = b + w_1 x_1 + w_2 x_2 \dots w_n x_n$
 - Optimise parameters w
 - Such that $y' \approx y$, close enough*
 - This is simply an optimisation problem



Difference between Learning and memorising

• A simple choice: f can be a look-up table, a perfect mapping of X to y Issue: wouldn't know what to do with new values of X (unseen data - X_u)

• Not so simple choice: f can be a very large and complex function (e.g. deeeeep neural network). Is it good?

Issue: lack of generality, wouldn't do good on unseen data X_u : Overfitting

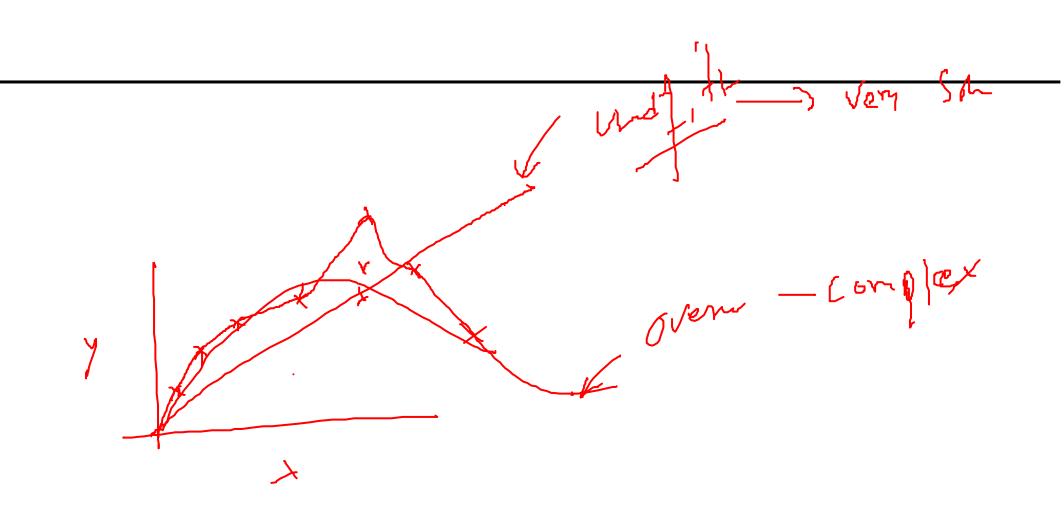
Solution: Problem (properly)

For given X, y, find function f as to

- Estimate/predict y' = f(X)
- Such that:
 - $min E[L(y'_u, y_u)]$
- for unseen data X_u
- $L(y'_u, y_u)$: Estimated risk / Loss

Training data: Data used to find optimise parameters

Testing data: Unseen data, used to evaluate the model (function) performance



How does that work?

We split data (X, y) randomly to two sets

- Training set (Xt, yt)
- Testing set (Xs, ys)
- How much to split?
- Does this work?
- What can go wrong?
- Other strategies:
- .. K-Fold cross validation, LOOV,
- .. (train, validation/dev, test)

Regression & Classification

Question: Can we treat classification problem as regression??

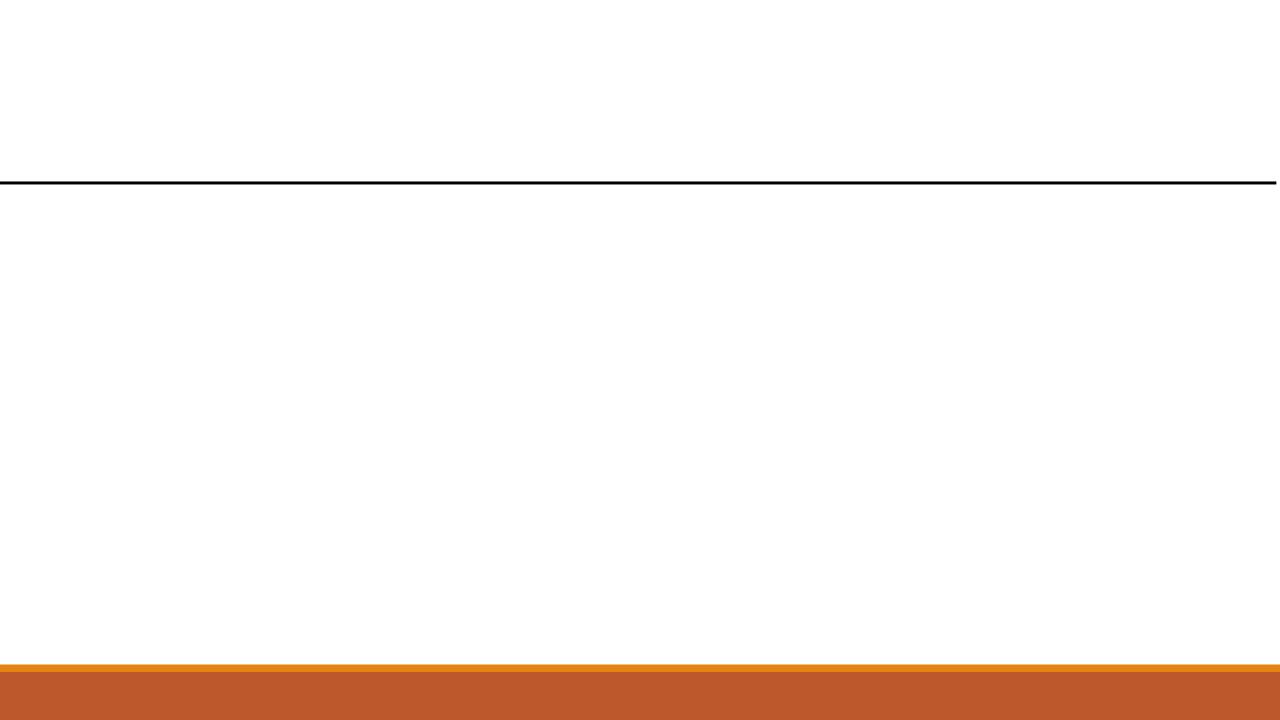
Supervised Learning: Regression & Classification

Regression:

- target (y) is continues variable y ∈ R
- - Example
 - Target: Housing price, blood sugar, temperature,

Classification:

- \circ target (y) is categorical, or limited set of integers y \in [0, 1]
- - Examples:
 - Email-spam or not, cat & dog image, handwriting digits classification, Cancer or not etc



Performance Measure & Loss function

Regression:

- Mean Square Error, $L(y', y) = E[|y'-y|^2]$
- Mean Absolute Error L(y', y) = E[|y'-y|]
- R^2, Pearson correlation

Classification:

- Accuracy, E[(y'==y)]
- F1-score, precision, recall, AUC
- Diagnosis: Confusion Matrix, ROC, misclassification, learning curve (NN)
- Loss function: Cross-entropy, Hinge loss, logistic loss etc

Why so many measures?

Example: Binary Classification

Breast cancer Classification:

- target y ∈ [0, 1]
- 30 features: X:

```
input xi :
   17.99
                10.38
                           122.8
                                      1001.
                                                     0.1184
                                                                  0.2776
    0.3001
                            0.2419
                                        0.07871
                0.1471
                                                    1.095
                                                                 0.9053
    8.589
              153.4
                            0.006399
                                        0.04904
                                                                 0.01587
                                                    0.05373
                0.006193
    0.03003
                           25.38
                                       17.33
                                                  184.6
                                                              2019.
                            0.7119
                                        0.2654
                                                                 0.1189
    0.1622
                0.6656
                                                    0.4601
```

traget yi: 0

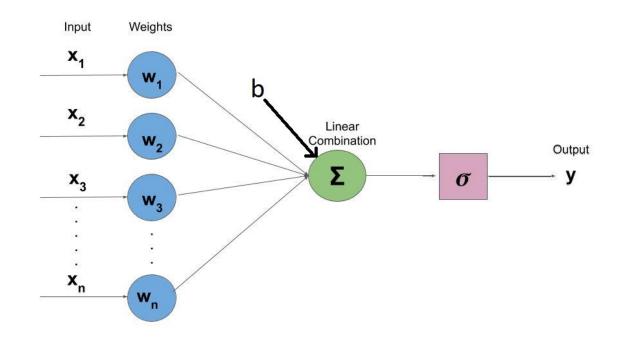
- Can we apply linear regression model?
- Kind-of, yes* and No*, until it is binary

Binary Classification:

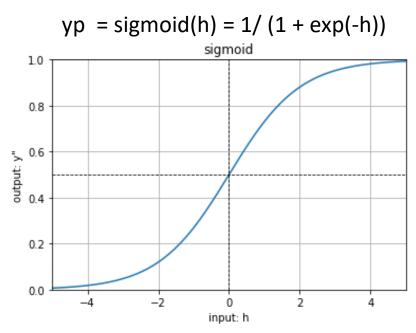
$$h = b + w_1 x_1 + w_2 x_2 \dots w_n x_n$$

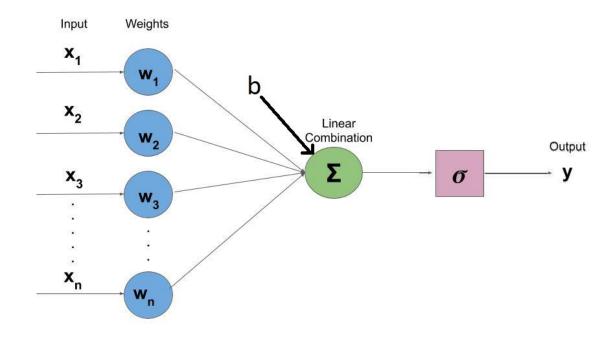
y = 1 if h>0 else 0

How far h should be from 0? As far as possible $y_p = sigmoid(h)$



Binary Classification:



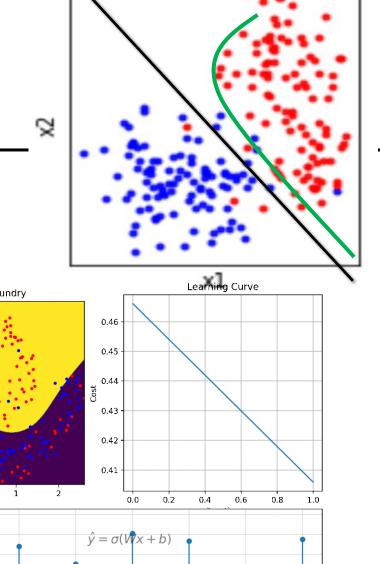


Loss
$$L(y,y_p) = ylog(y_p) + (1-y)log(1-y_p)$$

Binary Classification:

$$h = b + w_1 x_1 + w_2 x_2$$

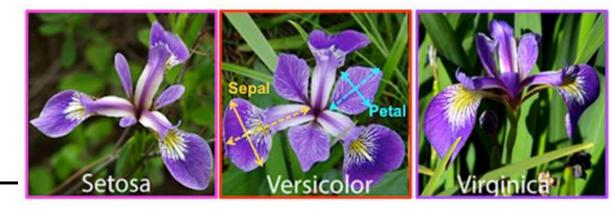
We need, **h**, a plane, in hyperdimensional space that separates two classes



-0.5

-1.5

- Example: Iris Dataset
- Features:
 - x1: sepal length (cm)
 - x2: sepal width (cm)
 - x3: petal length (cm)
 - x4: petal width (cm)
- Three classes:
 - Setosa, Versicolor, Virginica

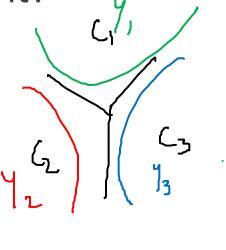


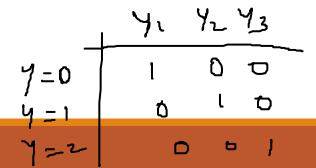
x1	x2	x 3	x4	lу
5.1	3.5	1.4	0.2	0
4.9	3.0	1.4	0.2	0
4.7	3.2	1.3	0.2	0
4.6	3.1	1.5	0.2	0
7.0	3.2	4.7	1.4	1
6.4	3.2	4.5	1.5	1
6.9	3.1	4.9	1.5	1
6.3	3.3	6.0	2.5	2
5.8	2.7	5.1	1.9	2
7.1	3.0	5.9	2.1	2

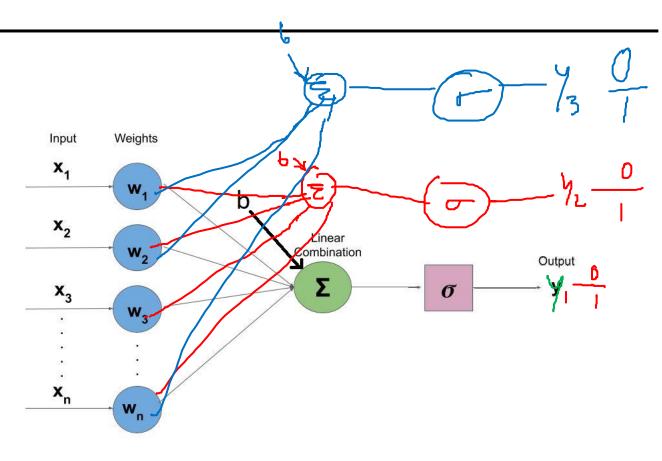
Iris dataset – Multi-class

- How do we do it?

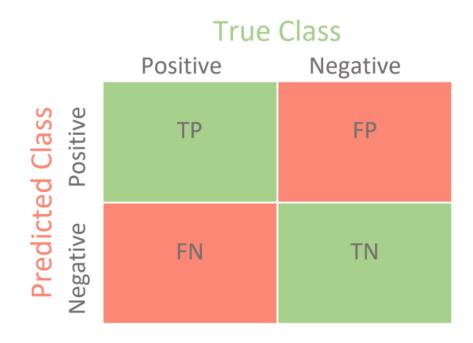
- one vs all

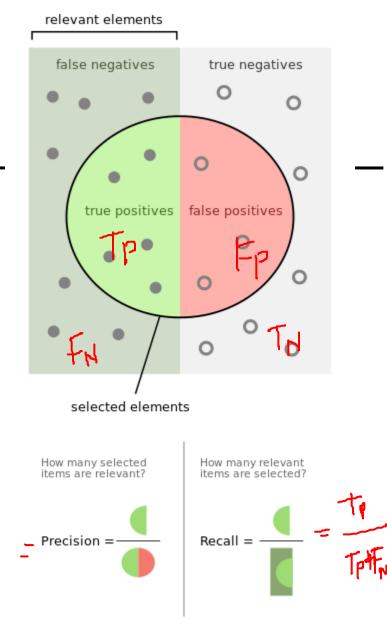






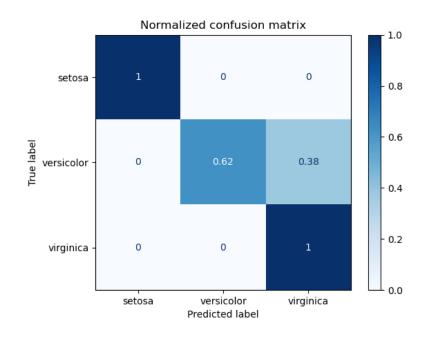
Performance Metrics

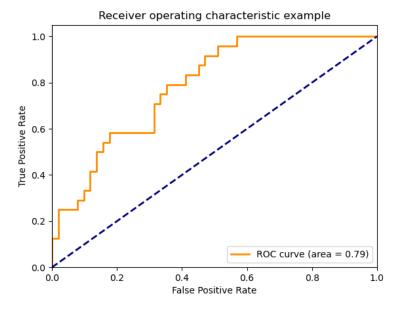




Performance Metrics

Confusion matric is not always same as TP/FP table





Normalising Features

Normalising:

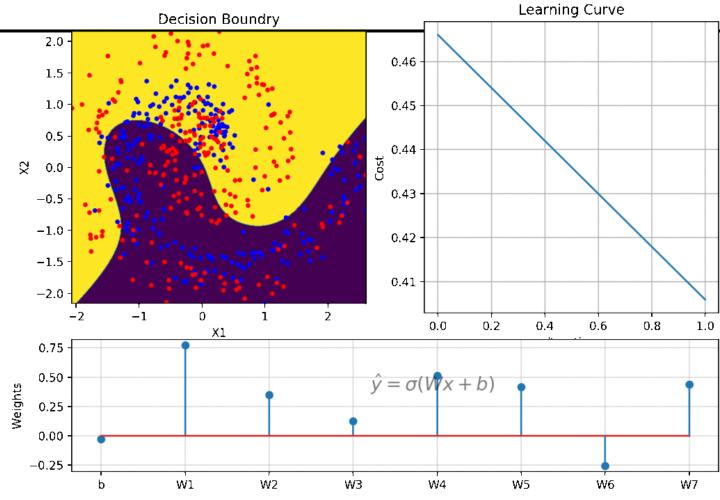
- When?
- Why?
- How?
- Mean cantered: Zero-mean, remove DC
- Scale Standard Deviation
- 0-1 normlisation

Machine Learning Models

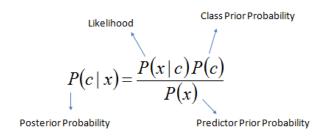
ML Models:

- Linear regression, Logistic Regression
- Support Vector Machine
- Decision Tree
- K-Nearest Neighbourhood (KNN)
- Naïve Bayes
- Ensemble Approach:
 - Random Forest
 - Gradient Booster
 - ExtraTree, AdaBoost

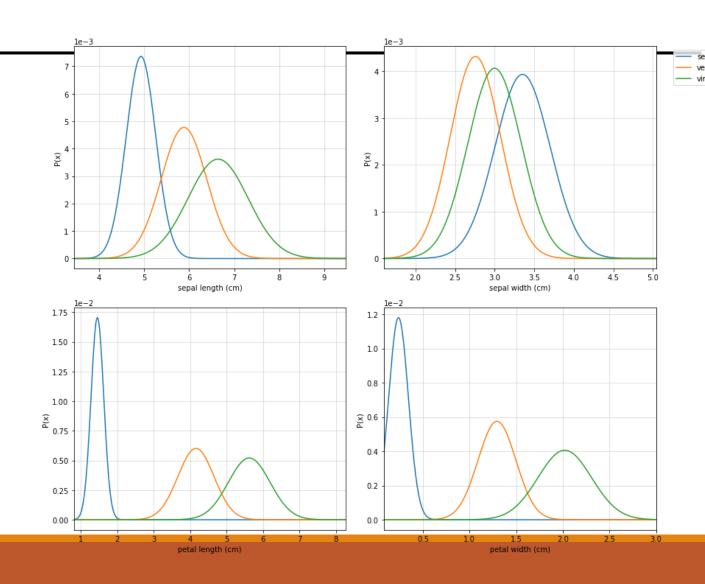
Logistic Regression



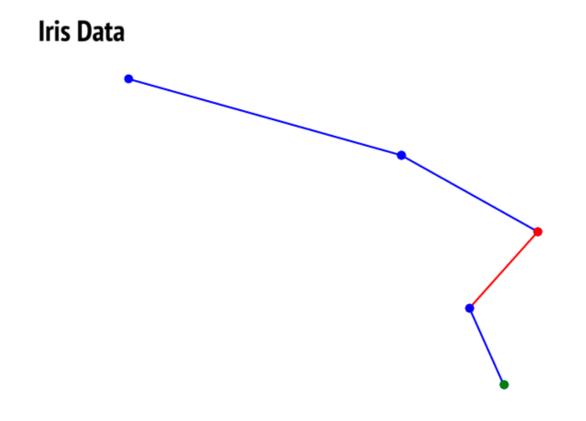
Naïve Bayes



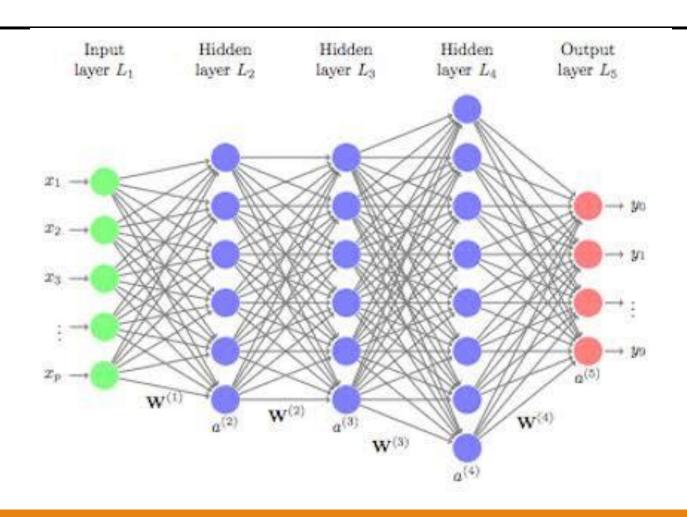
$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \dots \times P(x_n \mid c) \times P(c)$$



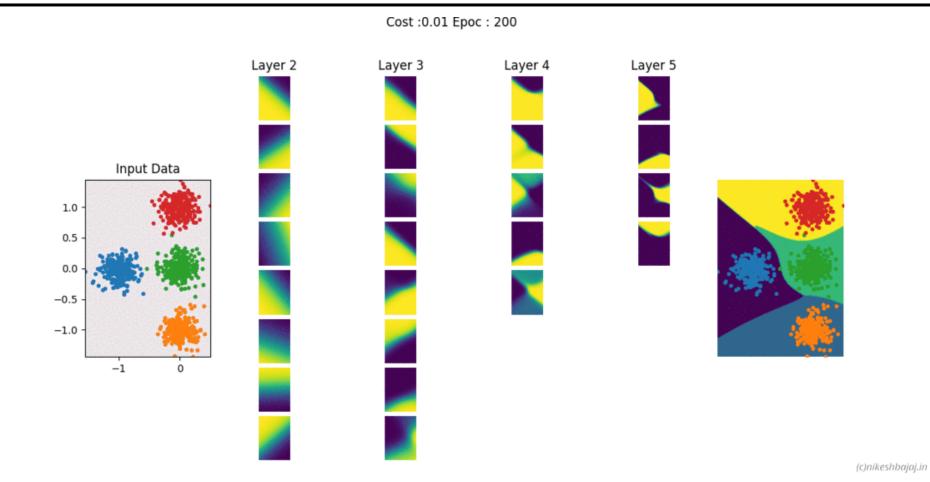
Decision Trees



Neural Network - Idea



Neural Network



Deeplearning

Deeplearning

- The deep* learning refer to a family of models based on Neural Networks. It has following aspects w.r.t conventional ML models
 - End-to-end learning
 - Complex relationship of input-target
 - Proven to solve many problems, which were not easy with conventional ML
 - Large number of parameters, heavy,
 - Not as easy to explain as conv. ML models

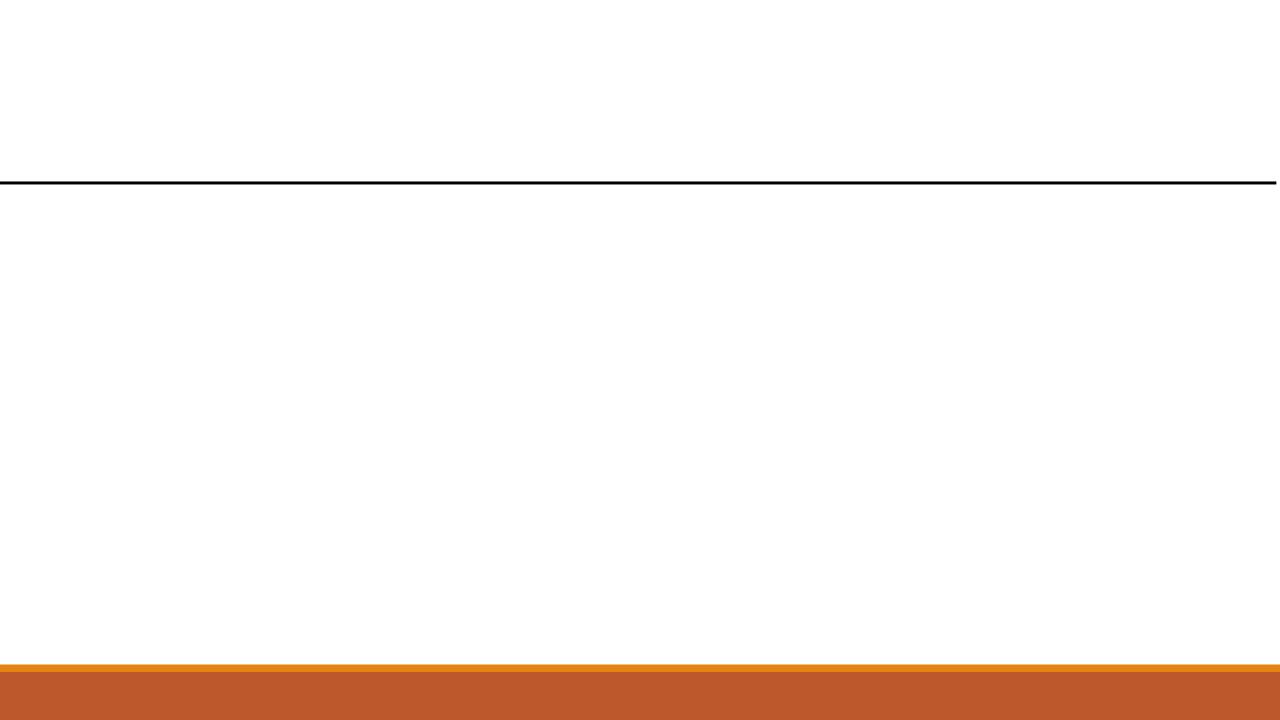
Deeplearning

Neural Network:

- Fully Connected Neural Network (MLP)
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN) LSTM, GRU
- Generative Adversarial Networks (GANs)

Example

Handwritten Digit Recognition:



Any Questions?