

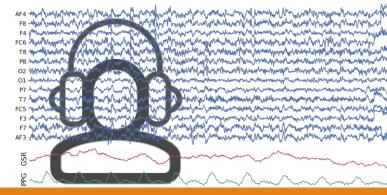
Predictive Analysis of Auditory Attention from

Physiological Signals

PhyAAt: Physiology of Auditory Attention

Nikesh Bajaj http://nikeshbajaj.in

<u>PhD Supervisors</u> Jesús Requena Carrión (QMUL) Francesco Bellotti (UniGe)



Overview

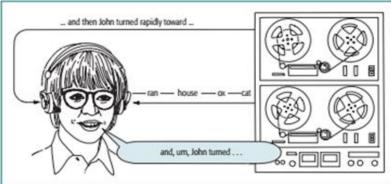
- Introduction :
 - Auditory attention & Problem formulation
- Experiment
 - Design & Procedure
- Collectect Data and Analysis
- Formulation of predictive tasks
- EEG Signal: Artifact, Rectifying, Analysis
- Performance of Predictive Tasks
 - SVM, Deeplearning : CNN

Conclusions

Introduction

Attention : A cognitive process of selectively focusing on a discrete aspect of information, while ignoring other perceivable information

- Cognitive attention is a complex process of the brain
- Cognitive psychologist & Neuroscientist have been studying it for decades, motivated by WW-II, fighter pilots.
- Cognitive Attention : Auditory, Visual, and Task oriented
- Theories of attention (auditory) : Filter theory, Early selection and Late selection, Cognitive load theory.
- Experiment for Auditory attention : Widely used experiment setting *dichotic listening task*.



Problem : Does auditory attention* modulates the physiology? Can it be estimated from such signals?

Experiment design

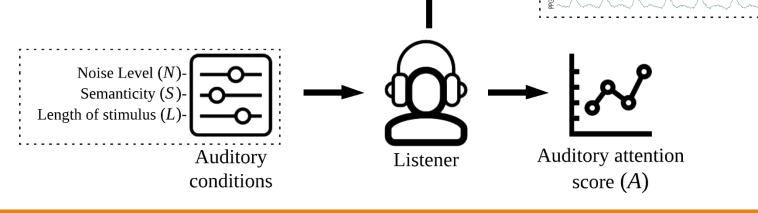
- Experiment based on *dichotic listening task*
- <u>Stimuli</u>
 - Generated non-semnatic (1700) stimuli from semantic (5000)
 - S1 : I am going to study. S2 : I would like to re
 - S3 : Let's *touch enjoyable* go.
- S2 : I would like to read some books.
- le go. S4 : I have a hey big are we dog.

- Auditory conditions

- **N**: Noise levels: { -6, -3, 0, 3, 6, ∞ (*inf*) } dB
- **S**: Semanticity: {0, 1}
- L: Length of Stimulus {L1, L2, L3}

- Attention score (A): [0,100]

- # correct words/ #total words in stimuli



Physiological responses (R)

month war when a wall war

F8-WWWWWWWWWWWWWWWWWWWWWWWWW

Physiological signals

Three physiological signals were recorded

1. Electroencephalogram (EEG): 14 Channel with Emotiv Epoc, wireless device. EEG signals were filtered while recording to remove high dc

$$y_e(n) = \frac{\alpha - 1}{\alpha} (x_e(n) - x_e(n - 1) + y_e(n - 1)), \quad \alpha = 256$$

2. Galvanic Skin Response (GSR): With 2 copper plates, interfaced with Arduino. Two GSR signal streams were recorded: Instantaneous and moving averaged

$$y_g(n) = \frac{1}{K} \sum_{k=0}^{K-1} x_g(n-k)$$

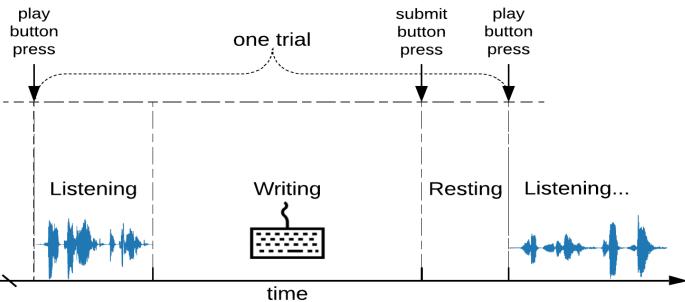
3. Photoplethysmogram (PPG): was recorded from Pulse sensor, interfaced with Arduino. Three streams of PPG signal were recorded, PPG signal, Beat Count (BPM), Inter Beat interval (IBI), using source code provided by manufacturer of pulse sensor

All signals were sampled at 128 Hz

Experiment procedure

- Subjects: A group of 25 non-native speakers, different nationality, and first language
- Age:16-35, Gender: 21 Male, 4 Female
- 144 trials for a subject, including all the auditory conditions
- Average time for a subject 40±10mins

-One trial: Listening -> Writing -> Resting



Collected data

From 25 Subjects:

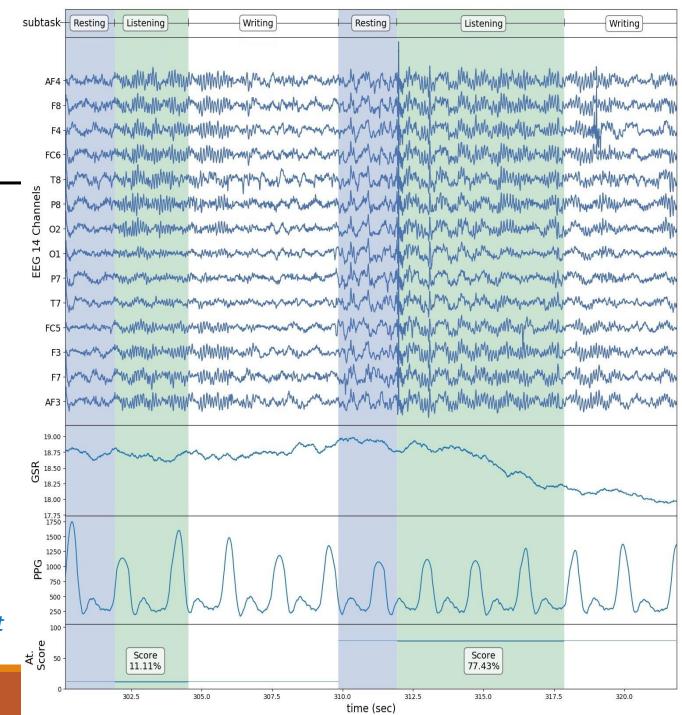
Signals: 19 signal streams at 128 Hz

- 14 Channel EEG signal
- 3 signal streams from PPG
- 2 signal streams from GSR

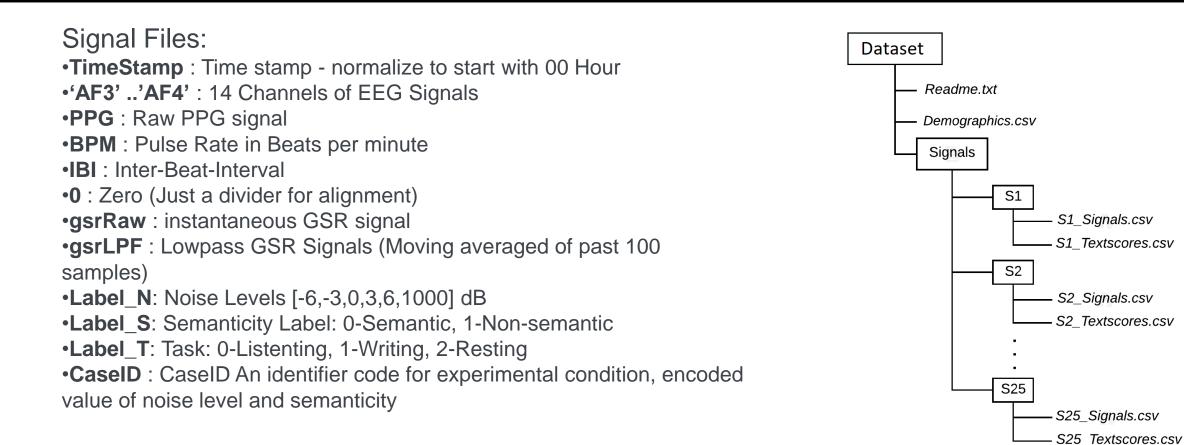
Labels

- State of task (T): Listening, writing, resting
- Auditory conditions (N,S,L)
- Attention score (A)

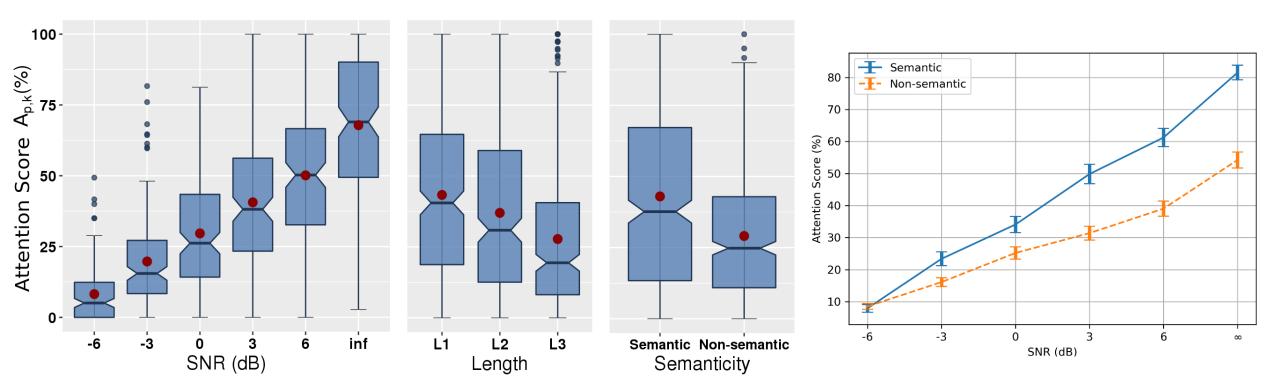
* PhyAAt: Physiology of Auditory Attention to Speech Dataset * https://PhyAAt.github.io



Collected data



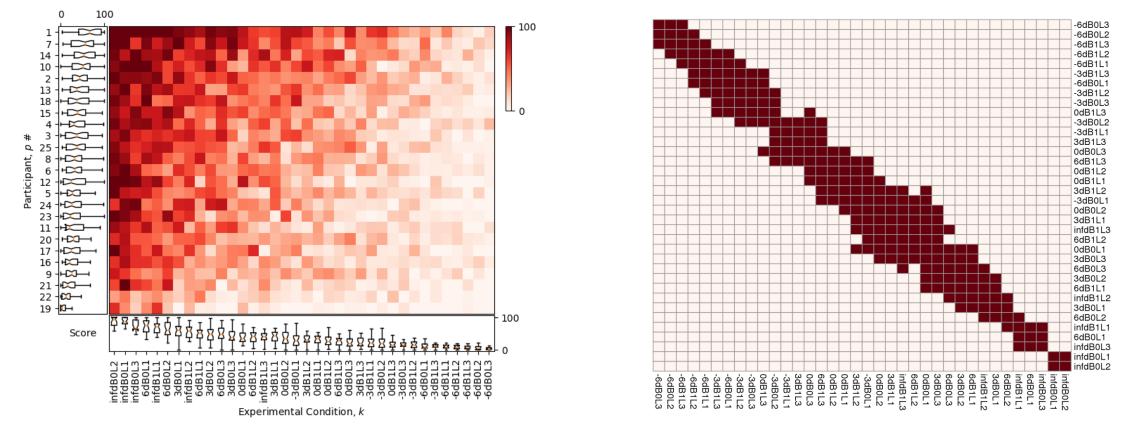
Analysis of attention scores



*Article: Analysis of Factors Affecting the Auditory Attention of Non-native Speakers, Electronic Journal of e-Learning

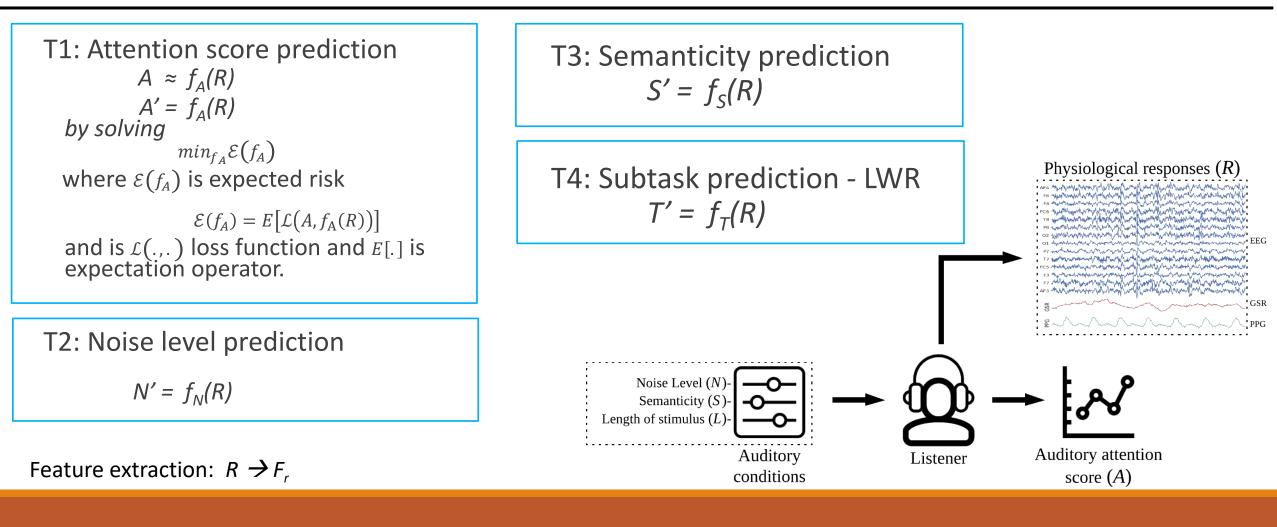
Analysis of attention scores

Individual analysis and comparing different experimental groups

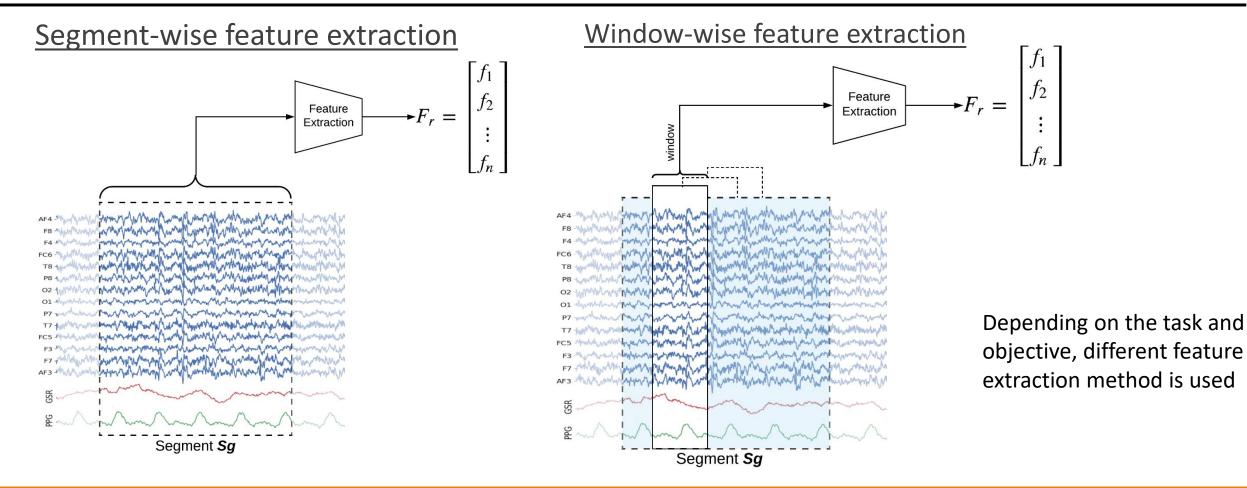


*Article: Analysis of Factors Affecting the Auditory Attention of Non-native Speakers, Electronic Journal of e-Learning

Formulation of predictive tasks



Feature extraction framework (procedure)

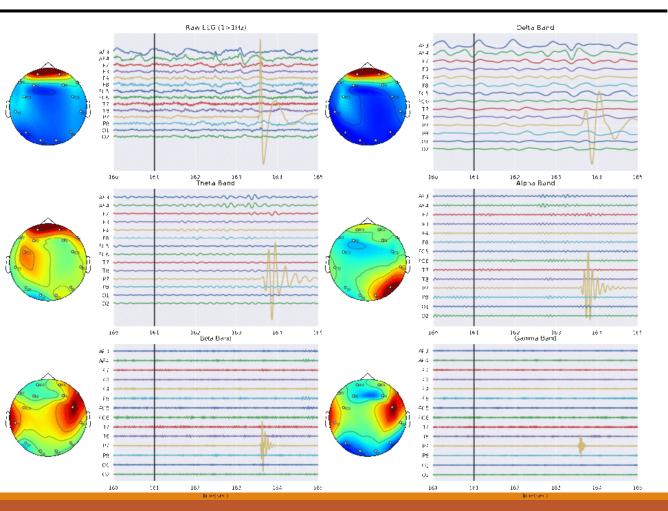


Analysis of EEG signals

Frequency Bands of EEG Signal:

- Delta : 0.1 4 Hz
- Theta : 4 8 Hz
- Alpha : 8 14 Hz
- Beta : 14 30 Hz
- Gamma (Low): 30-47 Hz
- Gamma (High): 47-64 Hz

Before We use EEG, we have an issue: *Artifacts in EEG*



Predictive modelling: Baseline

Before any further processing

Features:

- 84 features from EEG (14 x 6), power in each frequency band
- 10 features from GSP and PPG, mean and standard deviation

Models:

- Classification: Support Vector Machine with RBF kernel
- Regression : Huber Regression

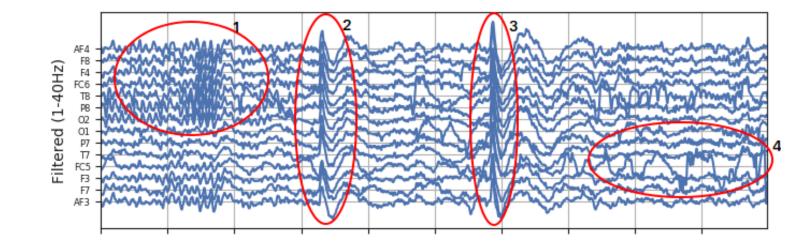
Performance Measure

- Accuracy for classification
- Mean Absolute Error (MAE) for regression
- 10-fold cross validation

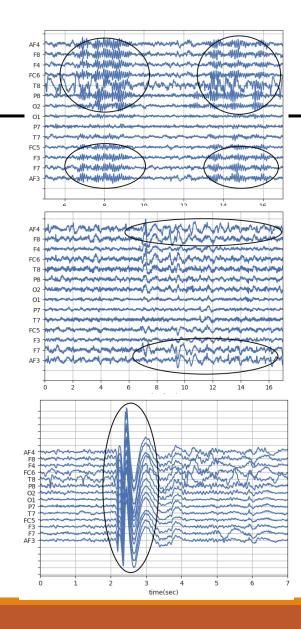
Task	Accura	acy/MAE
	Train	Test
1. Attention Score ^a : <i>Regr</i> .	8.920	37.234
2. Noise level ^b : 3 <i>classes</i>	0.625	0.493
3. Semanticity ^b : 2 <i>classes</i>	0.753	0.396
4. LWR ^b :3 <i>classes</i>	0.797	0.704

^aHuber Regression(*epsilon* = 1.35) ^bSVM (RBF)

Artifacts in EEG

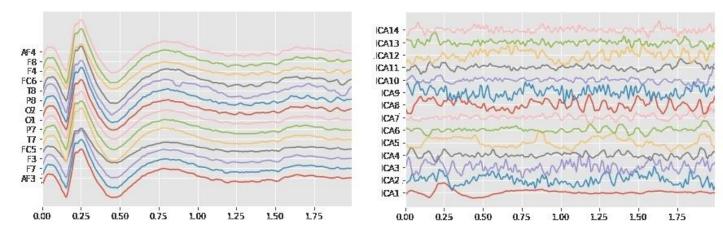


1: Muscular Artifacts
 2 and 3 : Motion artifact
 4: Ocular artifact



Artifact removal algorithms

Blind Source Separation – ICA based approach



Wavelet based approach: hard thresholding

 $\theta = \hat{\sigma}$

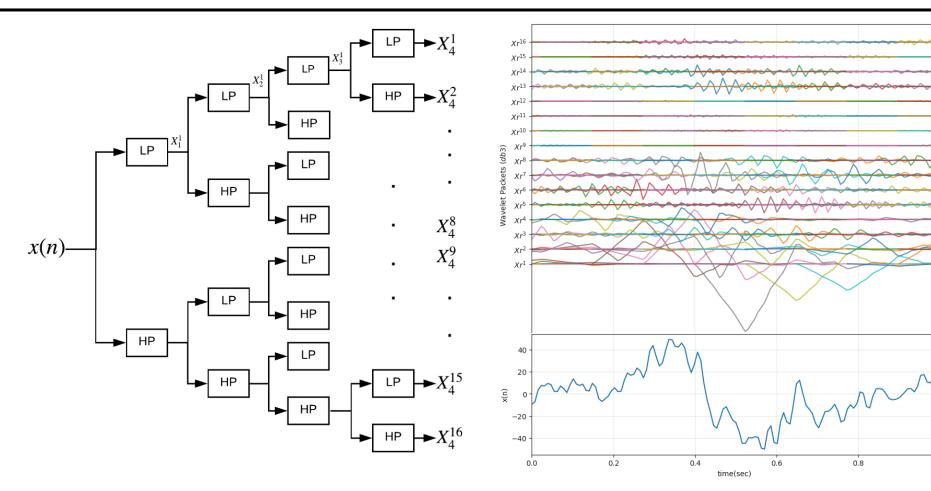
Global threshold:

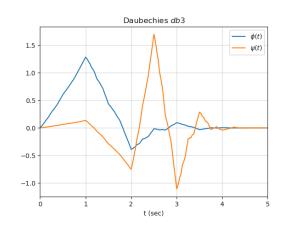
$$\sqrt{2logN}$$
 $\hat{\sigma} = \frac{median(|w|)}{0.6745}$

 $x(n) \xrightarrow{\text{LP}} X_L^1 \xrightarrow{\text{LP}} X_L^2 \xrightarrow{\text{LP}} X_L^4(k)$

• Statistical threshold: $\theta = 1.5 SD(w)$

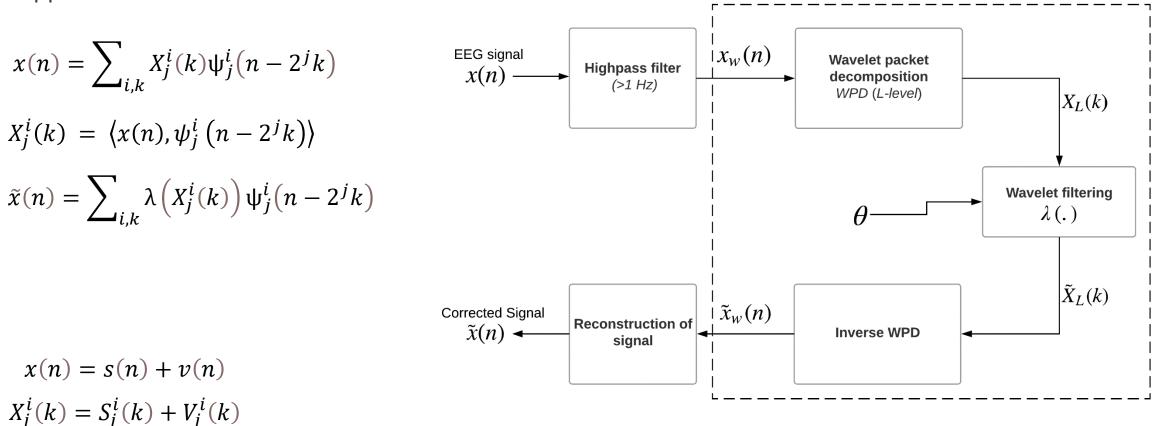
Wavelet Packet Decomposition (WPD)





WPD based artifact removal algorithm

Approach



Modes of wavelet filtering

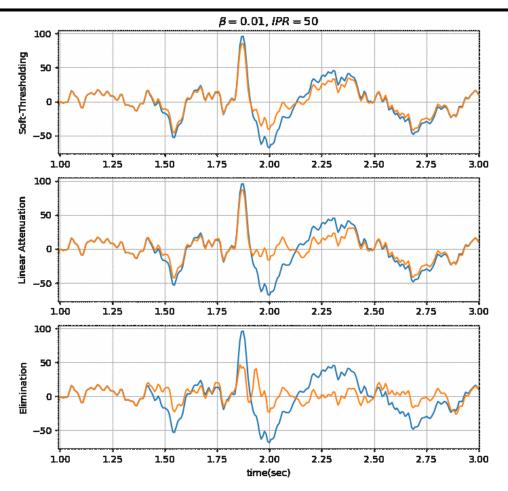


Threshold selection

Based on interquartile range (r)

$$\theta_{\alpha} = f_{\beta}(\mathbf{r}) = \begin{cases} k_2 exp\left(-\beta \frac{100}{k_2} \frac{r}{2}\right) & \text{if } r \ge -\frac{2k_2}{100\beta} \log(k_1/k_2) & Pr\left(\max|S_j| > f_{\beta}(r)\right) \to 0, \\ r \to \infty \end{cases}$$

Summarized algorithm



Algorithm 1 Tunable algorithm for artifact removal from EEG signal using wavelet decomposition

Input: Single channel EEG signal x(n)

Output: Corrected EEG signal $\tilde{x}(n)$

Parameters choice :

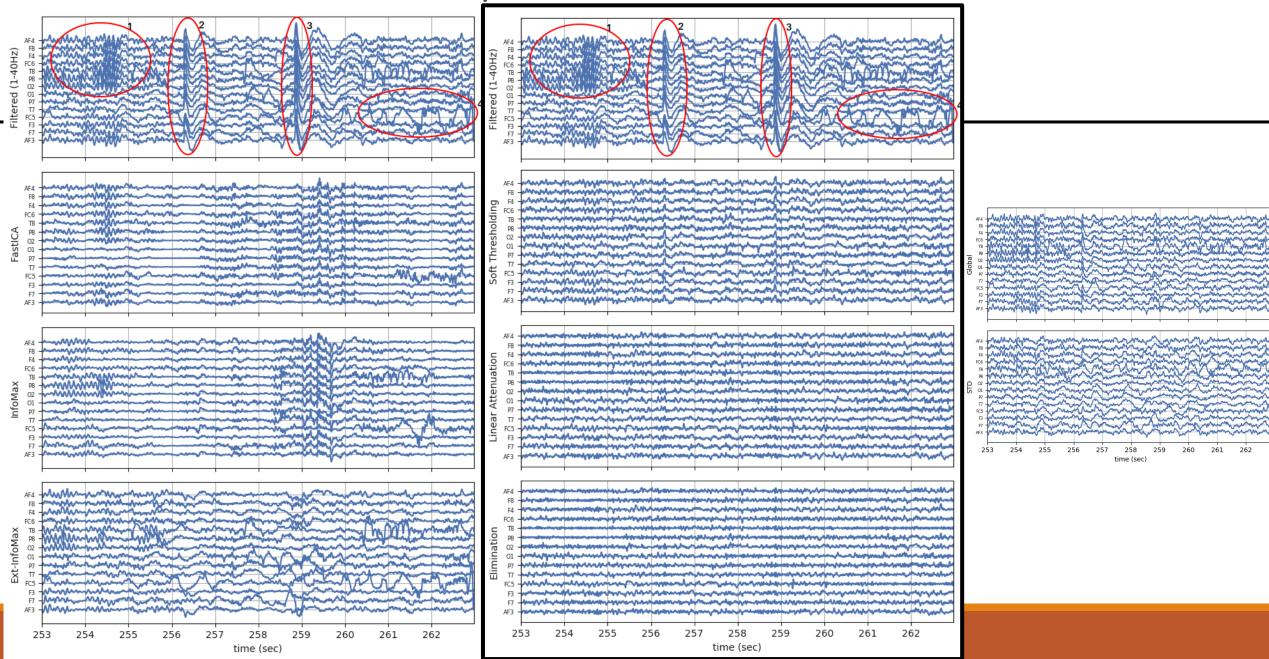
Wavelet family:(say *db3*), window size: *N* samples Bounds on threshold θ_{α} : $[k_1, k_2]$ (say [10, 100] or [0.1, 1.0]) Wavelet filtering mode: $\lambda_e(\cdot)$, $\lambda_a(\cdot)$, or $\lambda_s(\cdot)$ and corresponding θ_{β} ($\theta_{\beta} = 2\theta_{\alpha}$) or θ_{γ} ($\theta_{\gamma} = 0.8\theta_{\alpha}$)

Threshold selection parameter: β (say 0.1), *IPR* (say 50%) **Procedure:**

ocedure.

- 1: Filter the input signal x(n) with high pass filter of cut-off frequency 1 Hz: $x_f(n) \leftarrow x(n)$
- 2: while all windows of $x_f(n)$ are extracted **do**
- 3: Extract a window of signal with 50% overlapping: $x_w(n) \leftarrow x_f(n)$
- 4: Compute *L*-level WPD: $X_L \leftarrow WPD(x_w(n))$
- 5: Compute θ_{α}
- 6: Apply wavelet filtering: $\tilde{X}_L \leftarrow \lambda(X_L)$
- 7: Reconstruct signal with IWPD: $\tilde{x}_w(n) \leftarrow IWPD(\tilde{X}_L)$
- 8: Synthesize the entire signal with overlapping add method: $\tilde{x}(n) \leftarrow \tilde{x}_w(n)...$

Results: Visual inspection



Results: Performance of predictive tasks

After applying artifact removal algorithm

- Extracting power spectral features: Total power in 6 frequency band, for each channel, 84 features, using segment-wise
- Models: Support Vector Machine with RBF, C=1 and Huber regression
- Data of one subject with 10-Fold cross validation

Clinic for

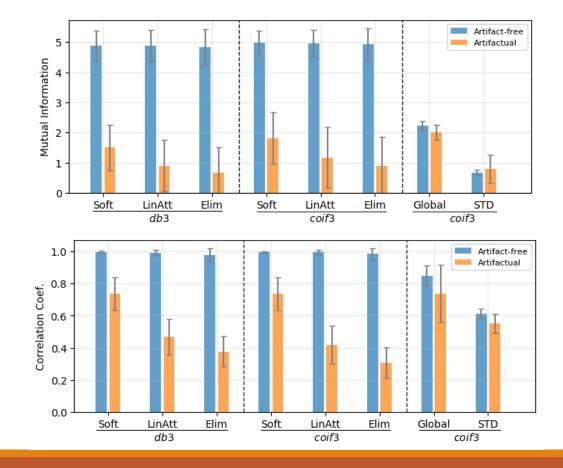
Automatic and tunable algorithm for EEG artifact removal using wavelet decomposition with applications in predictive modeling during auditory tasks

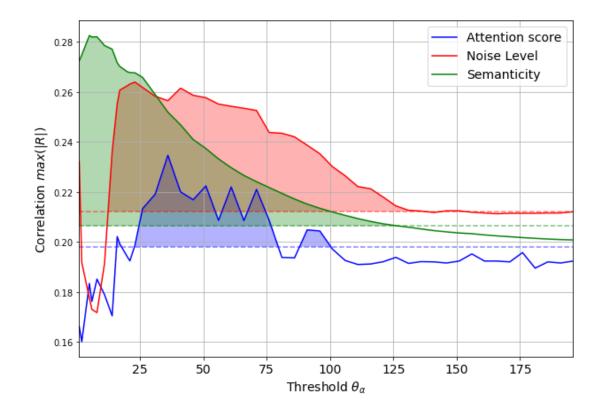
Nikesh Bajaj^{a,b,*}, Jesús Requena Carrión^a, Francesco Bellotti^b, Riccardo Berta^a, Alesandro De Gloria^b

^a School of Electronics Engineering and Computer Science, Queen Mary University of London, UK
^b Dipartimento di Ingegneria Navale, Elettrica, Elettronica e Delle Telecomunicazioni, University of Genoa, Italy

		LV	VR	Seme	nticity	Noise	Level	Attent	ion score
M	ethod	Accu	iracy	Accu	iracy	Accu	iracy	M	[AE
		Tr	Ts	Tr	Ts	Tr	Ts	Tr	Ts
Filtered sig	gnal (baseline)	0.797	0.704	0.753	0.396	0.625	0.493	8.920	37.234
	FastICA	0.793	0.701	0.785	0.424	0.592	0.493	8.153	37.176
ICA	InfoMax	0.828	0.722	0.833	0.458	0.644	0.472	8.509	38.490
	Ext. InfoMax	0.859	0.752	0.898	0.542	0.682	0.444	7.206	36.790
WPD:	Soft-Thr.	0.899	0.766	0.939	0.597	0.802	0.493	7.798	36.893
IPR = 50,	Lin. Atten.	0.884	0.780	0.892	0.556	0.731	0.486	8.482	38.435
$\beta = 0.6$	Elimination	0.887	0.778	0.892	0.549	0.748	0.507	7.475	33.322
WPD:	Soft-Thr.	0.892	0.782	0.934	0.576	0.804	0.493	8.479	38.899
IPR = 50,	Lin. Atten.	0.891	0.769	0.910	0.500	0.773	0.493	7.304	32.746
$\beta = 0.9$	Elimination	0.883	0.782	0.944	0.583	0.792	0.514	8.002	34.891
WPD:	Soft-Thr.	0.894	0.782	0.936	0.583	0.793	0.507	8.235	41.825
IPR = 70,	Lin. Atten.	0.888	0.773	0.924	0.493	0.781	0.500	7.481	33.908
$\beta = 0.6$	Elimination	0.895	0.796	0.957	0.611	0.818	0.514	8.174	35.811
WPD:	Soft-Thr.	0.895	0.792	0.934	0.597	0.792	0.500	8.557	39.828
IPR = 70,	Lin. Atten.	0.892	0.780	0.927	0.514	0.781	0.507	7.701	34.474
$\beta = 0.9$	Elimination	0.894	0.787	0.958	0.611	0.809	0.507	7.768	35.542

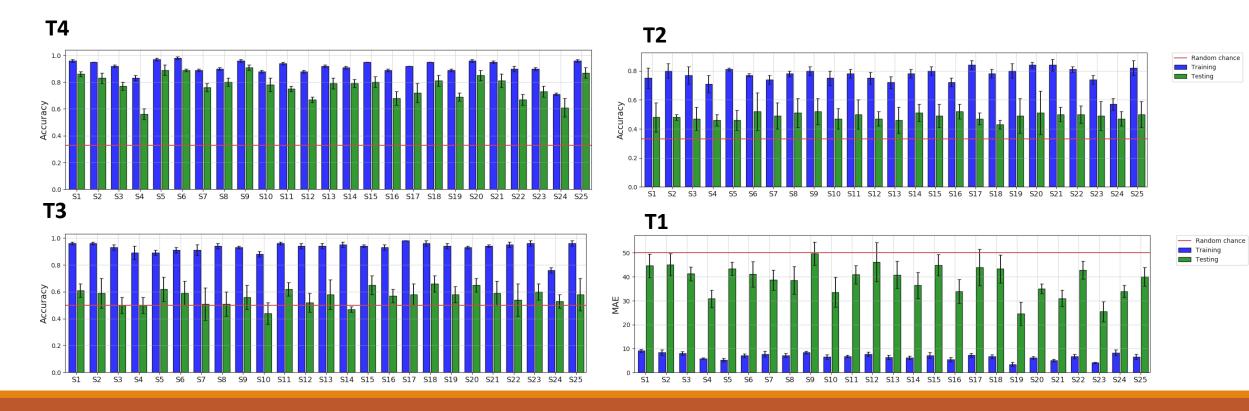
Results: Others





Predictive Tasks: All the subjects

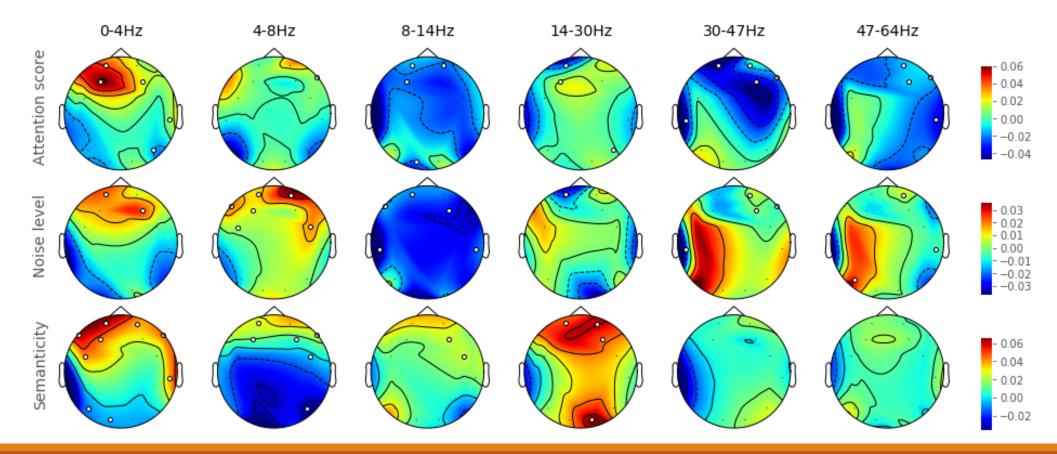
Performance of all the subjects in different tasks, using a model (SVM) and spectral features



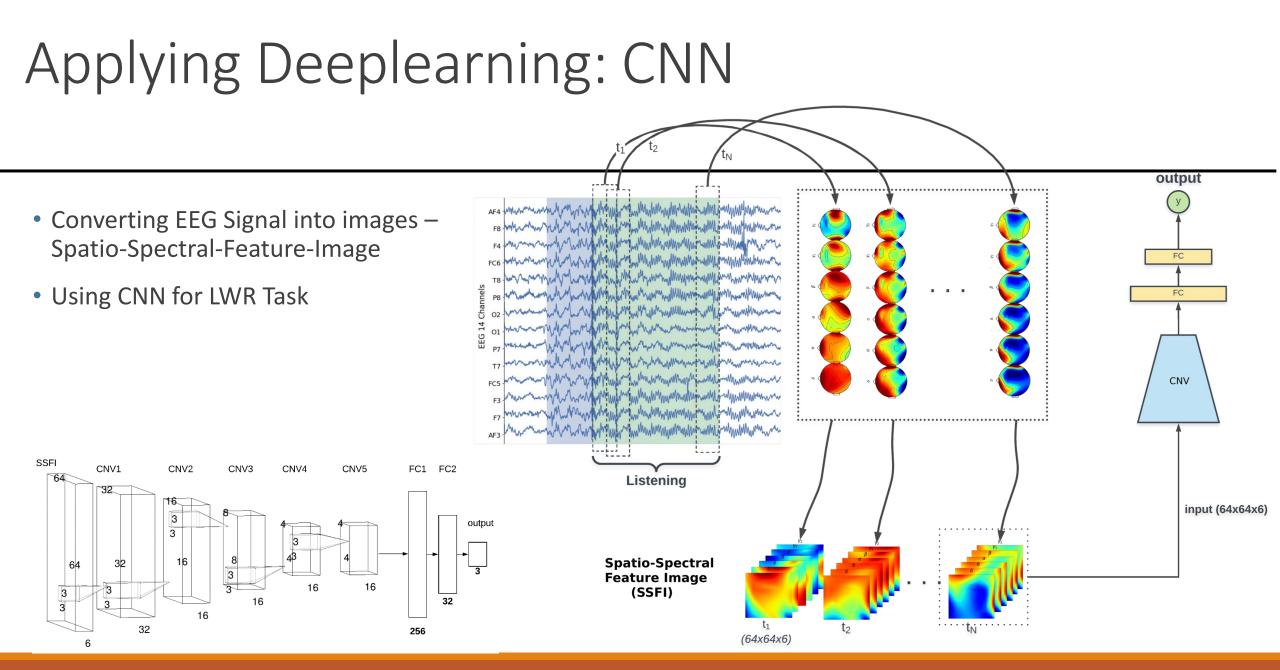
For attention score and noise level, Spearman's rank correlation

Analysis of EEG: Correlation analysis

Correlation of each channel with given activity average across all the participants



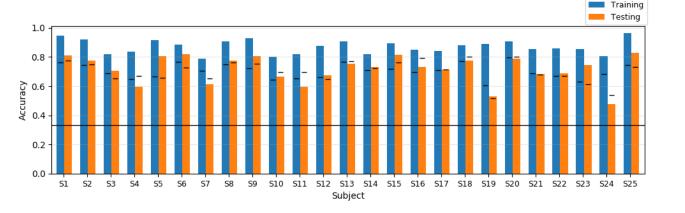
Sensors with significant correlation (p < 0.05) are highlighted.

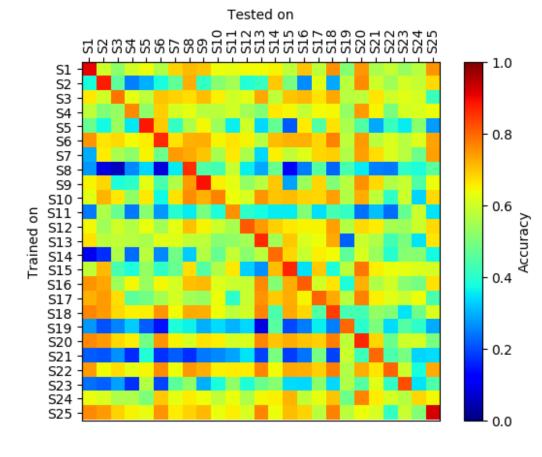


For Task 1: LWR classification using CNN

Inter-Subject Dependency analysis

- For Task 1: LWR classification using CNN
- Individual Subjects
- Inter-subject Dependency Analysis



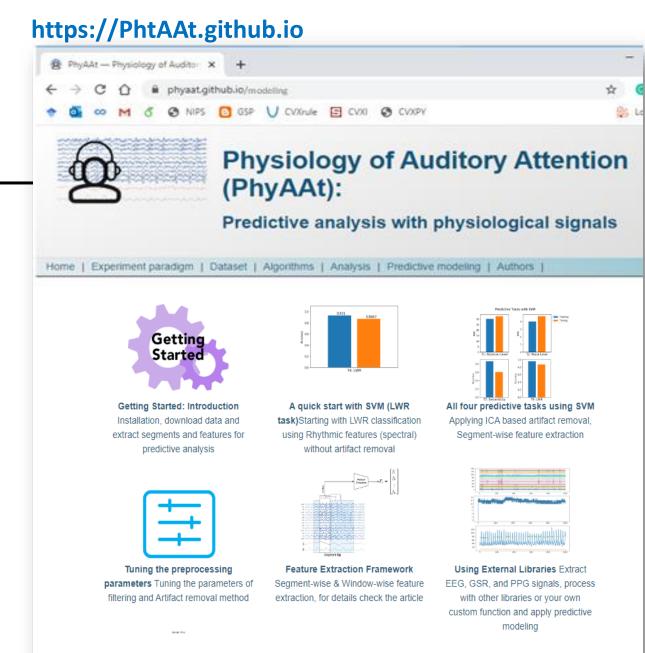


*Article is under review

Conclusions

- The experiment and collected data is unique of its kind
- Brain activity from collected data shows consistency with literature
- Proposed artifact removal algorithm gives control to tune the parameters and perform better than state-ofthe-art algorithms
- Collected data can be used to analyse and understand the auditory mechanism of brain
- All the resources (data, helper code, library and reproducible results) are* shared on project homepage: https:PhyAAt.github.io
- All the source code and algorithms are* distributed with python library: phyaat, which can be installed using pip

pip install phyaat



#PhyAAt

For paying *Attention**

*At least Auditory one

Any Questions ?

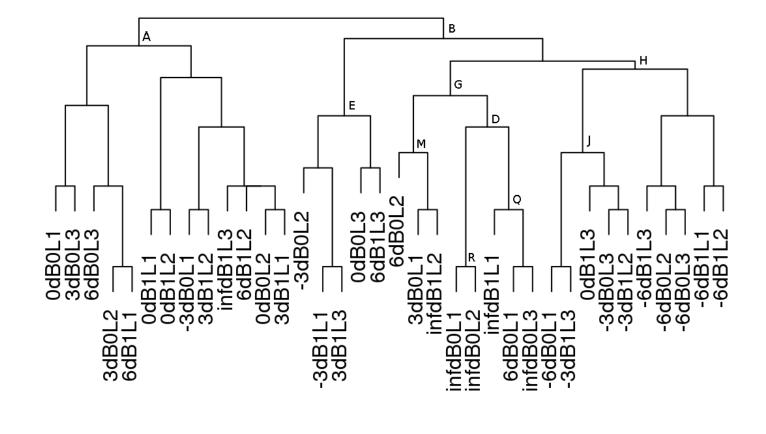
https://PhyAAt.github.io

Extra Slides

ANOVA – Attention score

Variable(s)	<i>F</i> -ratio	p — value	η ² partial
Noise level (SNR)	F(5, 120) = 238.500	$\approx 10^{-16}$	0.909
Length of stimulus	F(2, 48) = 95.9220	$\approx 10^{-16}$	0.800
Semanticity of stimulus	F(1, 24) = 115.611	$\approx 10^{-10}$	0.828
Noise*Length*Semanticity	F(35, 840) = 72.771	$\approx 10^{-16}$	0.752

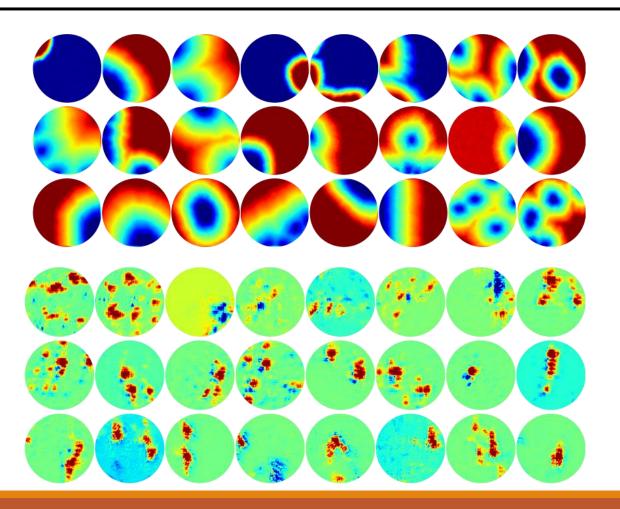
Hierarchical clustering



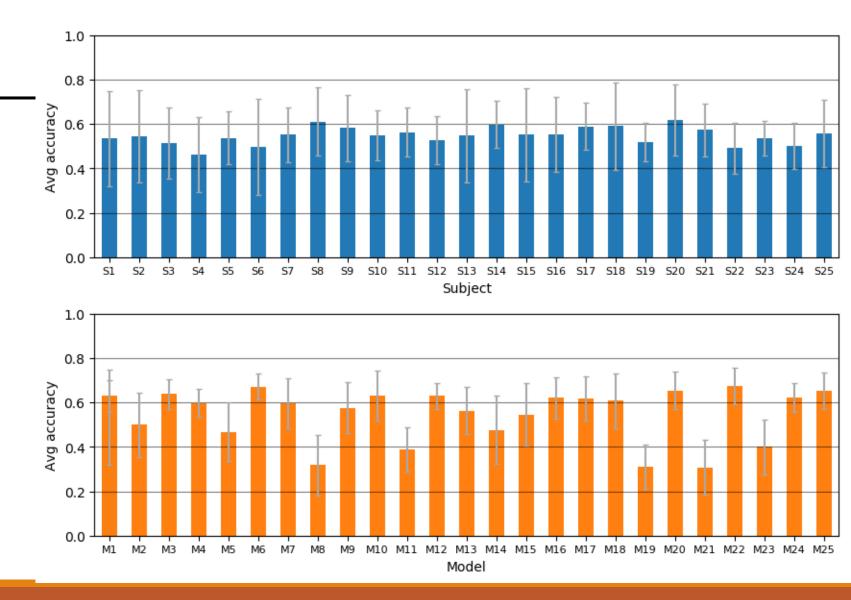
CNN – Feature maps

Conv1

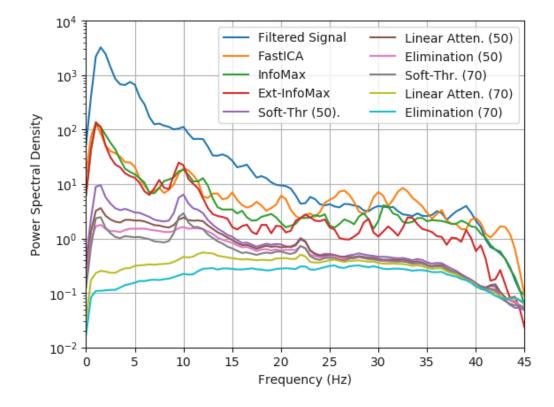
Conv5

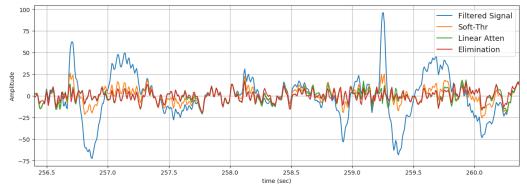


ISD Analysis

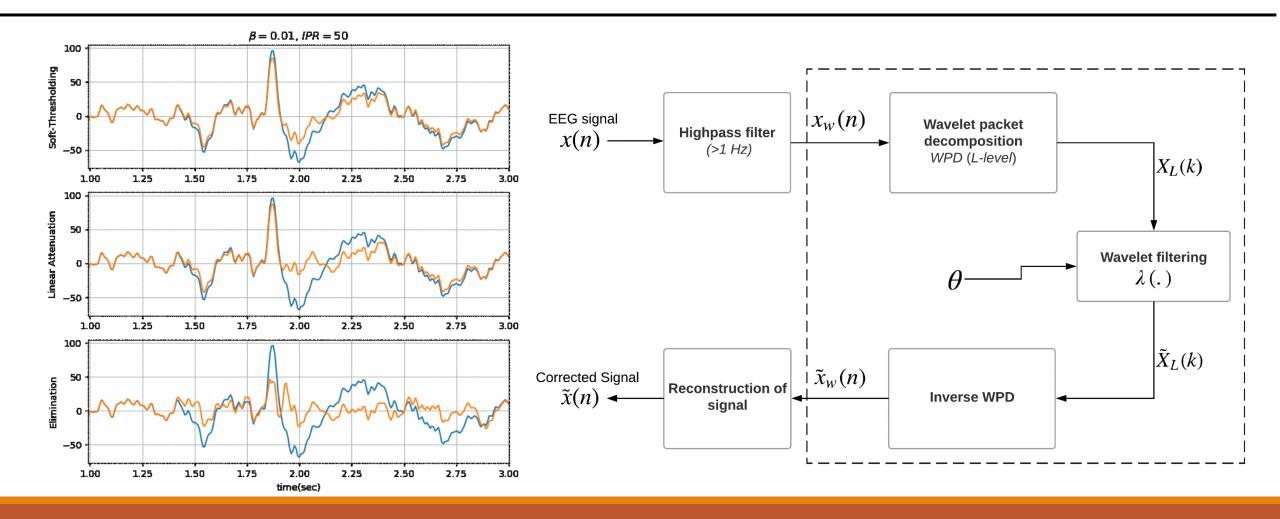


Artifact removal algorithm





Artifact Removal Algorithm: Tunable, based on WPD



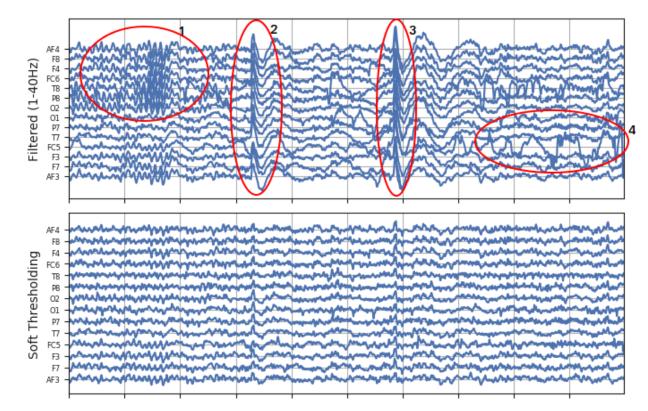
Artifacts in EEG

- -EEG signal is contaminated by artifacts
- Proposed an <u>automatic and tunable artifact removal</u> <u>algorithm</u>, based on wavelet packet decomposition
 [1]
- -Perform better, compared to state-of-the-art and gives control over suppression

Automatic and tunable algorithm for EEG artifact removal using wavelet decomposition with applications in predictive modeling during auditory tasks

Nikesh Bajaj^{a,b,*}, Jesús Requena Carrión^a, Francesco Bellotti^b, Riccardo Berta^a, Alesandro De Gloria^b

^a School of Electronics Engineering and Computer Science, Queen Mary University of London, UK
^b Dipartimento di Ingegneria Navale, Elettrica, Elettronica e Delle Telecomunicazioni, University of Genoa, Italy



Conclusions

- Brain activity from collected data shows consistency with literature
- Collected data can be used to analyse and understand the auditory mechanism of brain
- All the collected data and results are* shared on project homepage: https:PhyAAt.github.io
- -All the source codes and algorithms are* distributed with python library: phyaat, can be installed using pip
- pip install phyaat

*in progress

https://PhtAAt.github.io

8	PhyA	At —	Physio	logy o	of Auditory 🗴	+						-		×
\leftarrow	\rightarrow	С	仚		phyaat.git	hub.io/index					2	r G	9	0
٠	0	ŝ	Μ	в	S NIPS	🕙 ESS - Login	🔲 Papers With Code	🕒 GSP	V CVXrule	CVXI	S CVXPY	🔅 Loca	alSolver	~

Physiology of Auditory Attention (PhyAAt):

Predictive analysis with physiological signals

Home | Experiment paradigm | Dataset | Algorithms | Analysis | Predictive modeling | Authors

The dataset contains a collection of physiological signals (EEG, GSR, PPG) obtained from an experiment of the auditory attention on natural speech. From dataset, four predictive problems have been formulated. Python scripts are provided for preprocessing, visualizing, removing artifacts, predictive modelling and feature engineering.

	Non (1993)-1946
Ô	
	G

online 📐 Article on Dataset and Experiment Design is here

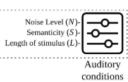
Dataset & Modeling

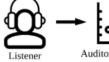
Getting started

Excecute all notebooks with 🤗 launch binder

Development

 All material Free Software: The 3-Clause BSD License





Physiological responses (R

Formulation of predictive tasks

- T1: Attention score prediction $A' = f_A(R)$
- T2: Noise level prediction

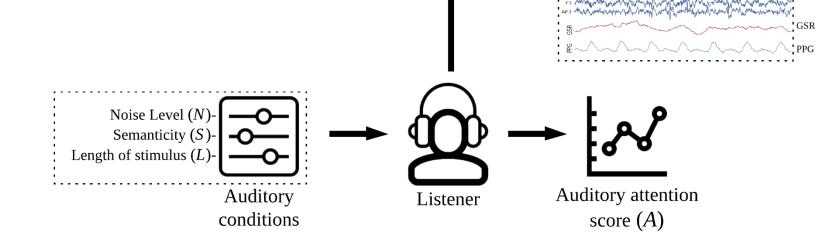
$$N' = f_N(R)$$

T3: Semanticity prediction

 $S' = f_s(R)$

T4: Subtask prediction - LWR

 $T' = f_{\tau}(R)$



Physiological responses (R)

man and a fair and a fair and a share a fair and a share a fair and a share a fair a fair

way they way

and the second state of th

Feature extraction: $R \rightarrow F_r$