Imperial College London

Introduction to Statistics

Nikesh Bajaj, PhD

Lecturer in Data Science, Queen Mary University of London Honorary Research Associate, Imperial Collage London <u>n.bajaj@{qmul,imperial}.ac.uk</u>

http://nikeshbajaj.in

Imperial College London

Overview

Session 1

- Describe your data
 - Descriptive statistics summarising the data
 - Visualisation (plots and figures)
- Inferential analysis:
 - Inference about population from sample
- Given two groups of data
 - Test the differences between groups (hypothesis testing)
 - Test the relationship between two variables (correlation)

Session 2 Lab Practice using SPSS

Imperial College London

Describe your data

Describe your data

- Types of Variables
- Descriptive Statistics:
 - Average: Mean, Mode, Median, Frequency distribution
 - Spread/variability: Range, Percentile, Standard deviation
 - Skewness, Outliers
- Visualization: Plots

How would you describe it?

Average height of men by year of birth, 1996

Mean height of adult men by year of birth. Data for the latest cohort (the year 1996) is therefore the mean height of men aged 18 in 2014.

Source: https://ourworldindata.org/grapher/average-height-of-men

Types of Variable

Numerical

 Quantitative: blood pressure, sugar level, no of cells, height, BMI Continues, Discrete

Categorical

- Qualitative: ethnicity, disease or not? , sex?
 binary (2 categories), nominal (>2 cat.)
- Ordinal: satisfaction-rating, age-group

Operators (where?)

° +. -, X

• =, ≠

Visualisation – just plotting the data

Impression of visualization: Profit of company

Plot & type of variable

Numerical

• Quantitative: (height)

Categorical

• Qualitative:

Genre	Unit Sold			
Sports	27,500			
Strategy	11,500			
Action	6,000			
Shooter	3 <i>,</i> 500			
Other	1,500			

Ordinal:					
	Hours	Frequency			
	01	4,300			

0

TIOUIS	ricquericy
01	4,300
13	6,900
35	2,000
510	1,000
1024	3,000

Descriptive Statistics

Summarizing the data

- Average: Mean, Mode, Median
- Frequency distribution
- Spread/variability: Range, Percentile, Standard deviation
- Skewness, Outliers
- What?, When?, Which?

Average: mean, mode, median

Most representative value of data

- Height in class
- [4, 4, 5, 4, 4, 4, 5, 4, 3, 5.5, 6, 4.5, 4.2, 5.2, 5,5, 6,1]
- Preference of drink

[tea, tea, coffee, coffee, tea, tea, milk, tea, coffee, coffee]

- Age-group

[10-15, 10-15, 10-15, 15-20, 20-25, 20-25, 20-25]

Mean: sum of all values/ number of values

Median: middle value of sorted sequence

Mode : most frequent value

Let's see a case: A Health Club

"London Health club proud to have class for everybody" Tuesday Evening Class Mean age Class 1: 17 25 Class 2 : 38 Class 3 : I ended up in the Kung Fu class with lots of young 'uns and Which class new customer a few ancient masters. My back will never be the same again. should attend?? New customer in 50s

Health club

Skewness

https://en.wikipedia.org/wiki/Skewness

https://en.wikipedia.org/wiki/Normal_distribution

Question

You are a coach for a cricket (or football) team, need to hire a new player

- Player 1, mean score of run rate (or goal rate) is 4, with standard deviation of 4
- Player 2, mean score of run rate (or goal rate) is 4, with standard deviation of 2

Who would you hire?

Player 1

Player 2

Box-whisker plot

Visual comparison with boxplot

Can we categorise cont. data?

- To improve the interpretation
- Example : BMI into 2 or 3 categories high or low BMI
- Implications?
- Loss of information loss of statistical power to detect the differences
- Impact of choosing –where to cut
- Splitting at median (dichotomising) reduces statistical power
- Worst for binary than 4 or more categories

Inferential Statistics

Inferential Statistics

- Sample and Population
- Estimate population parameters from sample, and its accuracy (standard error)
- Standard error and standard deviation
- Confidence interval
- Size of data

Population: A complete set of individual (objects)

Sample aka sample-data One point in sample-data aka item, point, sample

Examples:

- 1. Average weight of individual in UK of age 20-24.
- 2. Average marks of med. student in first year at Imperial.
- 3. Average Heart Rate of patients with High Blood Pressure in UK
- 4. Average height of Italian men

- Q: Why take sample, why not entire population?
- Q: How to sample (extract points/items from population)
- Q: How many points (samples, items) are required in a sample

Estimation of parameter

Mean weight of population

Best guess:

- Sample mean is estimation of population mean
- Uncertainty of this estimation (not exact value)

CI for the mean weight				
Mean 95%Cl				
169.5	163.7 – 174.2			

Plausible values for true unknown

- Confidence Interval (CI)

1000

3,472,522 (age: 20-24, UK)

Estimation of parameter

Mean weight of population

Best guess:

- Sample mean weight of is estimation of population mean weight
- Uncertainty of this estimation (not exact value)

Accuracy of best guess

-Standard Error (SE)

Plausible values for true unknown

- Confidence Interval (CI)

CI for the mean weight						
Mean 90%CI 95%CI 99%CI						
169.5	165.5-173.4	163.7 – 174.2	163.0-175.9			

3,472,522 (age: 20-24, UK)

Standard Error and CI

Standard Error:

 $SE = \frac{SD \ of \ population}{\sqrt{sample \ size}} \approx \frac{SD \ of \ sample}{\sqrt{sample \ size}}$

95% Confidence Interval

95% $CI = sample mean \pm 1.96 \times SE$

Means of all (hypothetical) samples follow normal distribution and 95% of them lie within mean ± 1.96xSE

Standard Deviation Vs Standard Error

SD:

- measure of spread/variability of data
- descriptive statistics
- for normally distributed data, 2SD includes 95% of observed values

SE:

- accuracy of estimation of population
- inferential statistics
- for 95% CI, hypothesis testing etc
- range of values likely to include true population parameter

When it can be misleading?

- Sample is not **representative** of population (validity)

- Not large enough data (accuracy)

Let's compute – Lab session

Data

Sample mean

Standard deviation

Standard error

Confidence interval

Effect of sample size: Example 1

Weight:

Sample mean = 81.4 kg, Standard Deviation = 21.4kg, n=1000

SE = ?, CI= ?

N of sample	Weight (mean)	Weight (SE)	95%CI
50	83.1	3.3	76.5-89.8
100	82.1	2.1	77.9-86.3
500	82.8	0.96	80.9-84.7
1000	82.7	0.68	81.4-84.0

Effect of sample size: Example 2

Height:

N	Mean	SE	CI
50	169.1	1.5	166.16-172.04
100	167.9	1.1	165.744-170.056
500	167.9	0.5	166.92-168.88
1000	168.2	0.3	167.612-168.788

Simulation

https://nikeshbajaj.github.io/P/Stats/Stats_Sampling_demo.html Or https://c4fa.github.io/nikJS/Stats/

Others

https://onlinestatbook.com/stat_sim/sampling_dist/index.html

https://onlinestatbook.com/2/index.html

Proportion and Cl

Estimating proportion of population that have particulate condition A.

Find the proportion in sample p = #A/total

SE of the proportion
$$p = \sqrt{\frac{p(1-p)}{n}}$$

95%*CI of the proportion* $p = p \pm 1.96 \times SE$

*np>5 & n(1-p)>5

Example:

Find proportion of obese people (BMI>30), given sample of 1000 people, among which 391 are obese.

p = 391/1000 = 0.391 SE = 0.0154 95%Cl = 0.362 to 0.422

Question: 151 have asthma in 1000, compute..?

Given two groups of data

TEST FOR DIFFERENCES

TEST FOR ASSOCIATIONS

Hypothesis Testing (p-value)

- Hypothesis? testing? P-value?
- Type I and type II error,
- Multiple testing and statistical power

Hypothesis and Testing

- Hypothesis: A statement about a true value of parameters and their relationship in a defined population
- Testing: The procedure, based on sample, to determine if the hypothesis is a reasonable statement*

You have a question/state Define hypothesis

Define Hypothesis

In science to verify if a hypothesis is a reasonable statement, you need to test it against its contrary which is assumed to be true.

Null Hypothesis H0

Assumed to be true \rightarrow No true difference or relationship between observed values in the sampled population

Alternative Hypothesis H1 { "Burden of Proof" }

To be proven \rightarrow There **IS** true difference or relationship between ..

Example: Let's make some hypothesis

- Your friend says, you are **always** late.

Statement?:

Is lung function different between genders?

H0: lung function in men = lung function in women

H1: lung function in men \neq lung function in women

Alternative Hypothesis with sides

- H1: lung function in men ≠ lung function in women two sided
- H1: lung function in men < lung function in women one sided
- H1: lung function in men > lung function in women one sided

You have a question/state ment?

Example 2

Is height in a class A and class B different?

H0: ?

H1:?

Question:

Can an alternative hypothesis be:

- There is no difference between two samples?
- Two sample groups are same?

Acquire Data

Acquire Data

Acquiring Data:

- Conducting experiment in Lab
- Collecting data from other sources

This is your sample data (think of population).

Ideally, this should be representative of population and large enough

Performing a test

Performing a test on a two groups for establishing differences or association, we use software.

Good news! You don't need to remember the formulas But you need to know, which test to perform and how to the read results

Perform test – right statistical test

Test & P-value

With a right test, compute test statistics, that summarise the different/relationship in your sample.

- Use test statistics to compute p-value, that tells you either to accept or reject null hypothesis

P-value: Probability of obtaining the difference/effect observed in given sample by pure effect of **chance**, when null hypothesis is true.

- If two samples comes from same population, how likely we see a difference between them
- Ranges from 0 to 1.
- $\circ\,$ To conclude a statistical significance , we need a cut-off value α (i.e. 0.05)
- NOT the probability of making a mistake!

P-value

Example:

- If p-value is <0.05, we are confident enough to reject the null hypothesis.
- α = 0.05 \rightarrow 5% chance of rejecting null hypothesis, even if it is true.
- α = 0.05 \rightarrow probability of committing a type I error

	Null hypothesis H0		
	True	Not True	
Accept H0 (fail to reject H0, $p>\alpha$)	Right	Type 2 Error (False negative with probability β)	
Reject H0 (p<α)	Type 1 Error (False positive with probability α)	Right	

https://www.slideshare.net/smulford/type-1-and-type-2-errors

Interpret p-value

Type 1 and Type 2 Error

Alternative Hypothesis

https://www.slideshare.net/smulford/type-1-and-type-2-errors

Type 1 and Type 2 Error

Interpret p-value

Null Hypothesis

Alternative Hypothesis

Interpret p-value

Type 1 and Type 2 Error

Type 1 Error (α):

- Rejecting TRUE null hypothesis
- False Positive
- α =0.05, 5% probability of false positive

Type 2 Error (β)

- Failing to reject FALSE null hypothesis
- False Negative
- Power is probability that we correctly rejects the Null Hypothesis
- Power = 0.8, β =0.20 (1-power), power 80%

P-value: summary

Smaller the p-value, stronger the evidence against null hypothesis

If p-value is <0.05:

- It is unlikely that any difference found in samples are due to chance
- Reject the null hypothesis in favour of alternative hypothesis
- Statistical significance

If p-value is <0.001:

• Strong evidence of significant results

What is p=0.049 or p=0.051?

- p-value is a guideline to decide if results deserves second look
- Ref: <u>Scientific method: Statistical errors</u>

Multiple testing

Each test has a 5% chance of 1 false positive

So, running multiple tests increases the probability of false positive

On same dataset, testing for multiple outcomes, single outcomes in multiple sub-groups, or multiple effects.

- Before testing, limit your objectives and outcomes to be tested.
- If you have to apply for multiple testing, apply α correction methods (e.g. Bonferroni, α/n)

Significance and Meaningful

Statistically significant results does not always have meaningful relevance and vice-versa

Example:

- Two class groups A and B, have statistical significant (p<0.001) difference of 2 marks in a subject.
- Men and women have a statistically significant difference of 0.5mL in lung function

Power and Sample size (N)

- Low power (due small sample size) increase the probability of False Negative

- You might find no difference between groups, and that might be False Negative, due to high β or low power (small sample size)

Example

Group	N	Mean	sd
Male	421	3555.20	909.75
Female	407	2500.77	625.99

Difference in mean = 1054.43 p-value <0.0001 T-statistics = 0.81

Group	N	Mean	sd
Male	12	3548.08	917.3
Female	8	2993.00	571.3

Difference in mean = 555.08 p-value = 0.4319 T-statistics = 0.81

Sample Size calculation

For two groups with mean m1 and m2, and standard deviation of sd, we need N samples in each group to be able to reject a null hypothesis with probability of False positive as 5% and probability of False negative of 80%

N in each group =
$$f(\alpha, \beta) \times \frac{2(sd^2)}{(m_2 - m_1)^2}$$

 $f(\alpha, \beta) = f(0.05, 0.20) = 7.85$

Don't worry about the formula, it is available in all the software.

Important thing to notice \rightarrow smaller the difference you like to detect, more samples you need, smaller the sd is less sample you need

• Ordinal: satisfaction-rating, age-group

Unpaired (independent)	Paired (dependent)	
- Data collected from each sample is independents of time (usually collected once)	 Data collected from same subjects at different time (before and after treatment) 	
- Different subjects in different groups	- Same subjects in different groups	
- BMI, age, height of subject	- BMI, before and after a treatment	

Parametric & Non-parametric

Parametric Tests

- Relies on the underlaying statistical distribution
- Normally distributed data (normality test)

Non-parametric Tests

• Do not depend on any distribution

Tests

Is average age of men and women different in given sample (dataset)?*

- HO: $\mu_{men} = \mu_{women}$
- H1: $\mu_{men} \neq \mu_{women}$

Paired? Normality? Equal variance?

Test statistics: 1.79 P-value: 0.0741

Age difference?

Is the average lung function in men different to one in women in general population

- HO: $\mu_{men} = \mu_{women}$
- H1: $\mu_{men} \neq \mu_{women}$

Paired? Normality? Equal variance?

Group N mean fev1(mL) s d Men 514 3535.08 915.08 Women 486 2515.17 646.08

Test statistics: 20.26 P-value: 0.001

difference?

Has the lung function changed after intense exercise in the study

H0
$$\mu_{before} = \mu_{after}: \mu_d = 0$$

.
H1: $\mu_{before} \neq \mu_{after}: \mu_d \neq 0$

Paired? Normality? Equal variance?

	N	mean	median	sd	sd
d	496	0.47	0.47	0.27	0.01

Has total immunoglobulin E (IgE) changed over time (over 10 years)

HO
$$\mu_{before} = \mu_{after}: \mu_d = 0$$

.
H1: $\mu_{before} \neq \mu_{after}: \mu_d \neq 0$

Paired? Normality? Equal variance?

Test statistics: 10 P-value>0.05

Let's give it a try

From the statement from list, let's define a hypothesis, testing approach:

- 1. Effectiveness of a teaching method for a subject
- 2. Effectiveness of a drug on elderly >50 for lung function
- 3. Lung function of smokers and non-smokers

Association between two

Correlation

- Investigate a relationship between two independent variables (i.e. x and y)
- Does x increases as y or vice-versa?
- Is relation linear?

One simple way is to plot scatter graph and see

Quantifying Correlation

Pearson Correlation Coefficient r or ρ (rho)

Pearson Correlation Coefficient

https://en.wikipedia.org/wiki/Correlation

Correlation

Pearson Correlation Coefficient

Parametric test

- x, y: normally distributed
- linear relationship

Generally:

- $|r| < 0.4 \rightarrow$ weak
- 0.4 < $|r| < 0.7 \rightarrow$ moderate
- $0.7 < |r| \rightarrow \text{strong}$

r = 0, no *linear* relationship

Spearman Rank correlation

Non-parametric test

Based on ranks rather than exact values

Correlation and P-value

P-value can be obtained from correlation with

Null Hypothesis H0 : r = 0

Alternative Hypothesis $H1: r \neq 0$

P-value tells us the probability of getting high correlation between x and y by pure chance

- 1. BMI vs Age, r= 0.13, p-value =0.08
- 2. BMI vs Age, r= 0.13, p-value =0.04
- 3. lung function before vs after exercise, r= 0.93, p-value = 0.001

Correlation

A strong correlation between x and y does **Not mean**

- x causes y : $X \rightarrow Y$
- y causes x : $Y \rightarrow X$

• x and y are caused by one or more other variables z: $Z \rightarrow X$, $Z \rightarrow Y$

Correlation is not causation

Stats Demo links: <u>https://nikeshbajaj.github.io/P/Stats/Stats_Sampling_demo.html</u> <u>https://c4fa.github.io/nikJS/Stats/</u>

Imperial College London

If you have any question or doubt, please contact me via email

Nikesh Bajaj, PhD Lecturer in Data Science, Queen Mary University of London Honorary Research Associate, Imperial Collage London <u>n.bajaj@{qmul,imperial}.ac.uk</u> <u>http://nikeshbajaj.in</u>